
1 Classical Mechanics

Figure 1: Sketch of the double pendulum system.

The double pendulum is a system consisting of two simple pendulums, one of which is attached to
the other, as it is shown in Fig. 1. Motion is contained within a vertical plane, so there are only two
degrees of freedom, namely, the angles θ1 and θ2 made by each wire with the vertical direction.

Let us assume that both wires have the same length, i.e., ℓ1 = ℓ2 = ℓ, and their respective masses can
be neglected. Moreover, we also assume the same mass for both pendulums, that is, m1 = m2 = m.

Whether the double pendulum displays either a regular or a chaotic behavior depends on the initial
conditions.

1. (6 points) Determine the equations of motion of the two pendulums from their Lagrangian.

2. (2 points) Suggest two initial conditions that correspond to two unstable trajectories. Calculate
their mechanical energy.

3. (2 points) Could you suggest any initial condition leading to regular motion?
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Solutions

Figure 2: Sketch of the double pendulum system specifying the angular variables of interest to
describe the system dynamics.

To simplify the calculations, we first define the following variables according to Fig. 2:

x1 = ℓ sin θ1,

y1 = −ℓ cos θ1,
x2 = ℓ sin θ1 + ℓ sin θ2 = ℓ (sin θ1 + sin θ2) ,

y2 = −ℓ cos θ1 − ℓ cos θ2 = −ℓ (cos θ1 + cos θ2) .

1. (6 points)Determine the equations of motion of the two pendulums from their Lagrangian.

The potential energy is V = V1 + V2. If we take y = 0 as the zero for the potential energy, then

V1 = mgy1 = −mgℓ cos θ1,
V2 = mgy2 = −mgℓ (cos θ1 + cos θ2) .

On the other hand, the kinetic energy is T = T1 + T2, where

T1 =
1

2
mv21 =

1

2
m

(
ẋ21 + ẏ21

)
=

1

2
mℓ2θ̇21,

T2 =
1

2
mv22 =

1

2
m

(
ẋ22 + ẏ22

)
=

1

2
mℓ2

[
θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ1 − θ2)

]
.

From them, we obtain the Lagrangian for the system,

L = T − V =
1

2
mℓ2

[
2θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ1 − θ2)

]
+mgℓ (2 cos θ1 + cos θ2) .

The Lagrangian equations for each pendulum read as

d

dt

(
∂L
∂θ̇i

)
− ∂L
∂θi

= 0,

with i = 1, 2. Making the corresponding substitutions, we finally obtain the equations of motion
for the double pendulum, which read as:

2mℓ2θ̈1 + mℓ2θ̈2 cos(θ1 − θ2) +mℓ2θ̇22 sin(θ1 − θ2) + 2mgℓ sin θ1 = 0,

mℓ2θ̈2 + mℓ2θ̈1 cos(θ1 − θ2)−mℓ2θ̇21 sin(θ1 − θ2) +mgℓ sin θ2 = 0,

or, after removing constant factors, as:

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇22 sin(θ1 − θ2) + 2ω2 sin θ1 = 0,

θ̈2 + θ̈1 cos(θ1 − θ2)− θ̇21 sin(θ1 − θ2) + ω2 sin θ2 = 0,

where ω ≡
√
g/ℓ corresponds to the oscillation frequency for a simple pendulum.

Problem 1. Classical Mechanics Page 2



2. (2 points) Suggest two initial conditions that correspond to two unstable trajectories. Calculate
their mechanical energy.

The following initial conditions, (θ1(0), θ2(0), θ̇1(0), θ̇2(0)), are unstable:

� Initial condition 1: (0, π, 0, 0), with E1 = −mgℓ.
� Initial condition 2: (π, π, 0, 0), with E2 = 3mgℓ.

3. (2.5 points) Could you suggest any initial condition leading to regular motion?

At high energies, T ≫ V and θ1 ≈ θ2. Accordingly, L ≈ T and the equations of motion are

d

dt

(
∂L
∂θ̇i

)
= 0,

that is, θ̈i = 0, where i = 1, 2. The solution to this equation of motion is θi(t) = cit, which is
the trajectory for a rotor.
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2 Classical Gravitation

Figure 3: (a) Hyperbolic flyby trajectory within the sphere of influence in the frame oriented by
the Sun direction. (b) Hyperbolic trajectory in the frame oriented by the apse line showing polar
coordinates and relevant angles.

A planet’s gravitational sphere of influence is the region near the planet where its attraction over-
whelms all other gravitational forces, including that of the Sun. Relative to the planet, the sphere of
influence can be considered to be of infinite radius.

A spacecraft that enters a planet’s sphere of influence and does not impact the planet or go into
orbit around it will continue in its hyperbolic trajectory through periapsis P and exit the sphere of
influence, as it is shown in Fig. 3(a).

Let ûV be the unit vector in the direction of the planet’s heliocentric velocity vector V⃗ —that will be
taken as constant neglecting its change of direction during the flyby—, and let ûS be the unit vector
pointing from the planet to the Sun. Consider a circular planetary orbit with ûS and ûV orthogonal.

The initial heliocentric velocity of the spacecraft when it enters into the planet’s sphere of influence is

V⃗in = Vin (cosα ûV + sinα ûS) ,

where α is the angle between V⃗in and V⃗ (we use uppercase letters for the heliocentric velocities and
lowercase for the geocentric ones). In the planet’s reference frame, this velocity is

v⃗in = v∞ (cosϕ∞ûV + sinϕ∞ûS) .

The spacecraft flies past the planet on the sunlit side [see Fig. 3(a)]. It follows a Keplerian trajectory
that, in the planet’s reference frame oriented by the apse line [see Fig. 3(b)], is given by

1

r
=

µ

h2
(1 + e cos θ) ,

where h = |L⃗|/m is the spacecraft angular momentum per unit mass, µ = GMplanet, e is the eccen-
tricity, and r and θ are the polar coordinates (radial distance and polar angle) in that frame.

1. (1 point) Write v⃗in and ϕ∞ in terms of Vin, α, and V .

2. (5 points) Determine the eccentricity e of the trajectory and the total angular deviation δ of
the spacecraft as a function of the initial speed v∞ and the periapsis radius rP .

3. (4 points) Let the spacecraft’s final heliocentric velocity be V⃗out = Vout (cosαoutûV + sinαoutûS) .
Determine Vout and αout in terms of the initial velocities V, Vin, the orientation α, and the pe-
riapsis radius rP .
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Solutions

1. (1 point) Write v⃗in and ϕ∞ in terms of Vin, α, and V .

The geocentric spacecraft velocity is v⃗in = V⃗in − V⃗ , i.e.,

v⃗in = (Vin cosα− V ) ûV + Vin sinα ûS .

This can be written as in the text,

v⃗in = v∞ (cosϕ∞ûV + sinϕ∞ûS) ,

with

v∞ =
√
V 2 + V 2

in − 2V Vin cosα,

tanϕ∞ =
Vin sinα

Vin cosα− V
.

2. (5 points) Determine the eccentricity e of the trajectory and the total angular deviation δ of
the spacecraft as a function of the initial speed v∞ and the periapsis radius rP .

Both, energy and angular momentum, are conserved in the inertial geocentric frame, so that

1

2
v2∞ =

1

2
v2P − µ

rP
,

h = rP vP .

Also, rP is the minimum radius (cos θ = 1), i.e.,

rP =
h2

µ

1

1 + e
,

so that the eccentricity is

e = 1 +
rP v

2
∞

µ
.

On the other hand, r → ∞ when the spacecraft crosses the planet sphere of influence with the
polar angle becoming cos θ∞ = −1/e. The deviation is δ = π− 2β, with β = π− θ∞. This leads
to

cosβ = − cos θ∞ =
1

e
,

which leads to

sin
δ

2
= sin

(π
2
− β

)
= cosβ =

1

e
.

Finally,

δ = 2arcsin

(
1

e

)
= 2arcsin

 1

1 +
rP v

2
∞

µ

 .
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3. (4 points) Let the spacecraft’s final heliocentric velocity be V⃗out = Vout (cosαoutûV + sinαoutûS) .
Determine Vout and αout in terms of the initial velocities V, Vin, the orientation α, and the pe-
riapsis radius rP .

Let
v⃗out = vout (cosϕoutûV + sinϕoutûS) .

Due to energy conservation vout = v∞. The spacecraft velocity also rotates at an angle δ with
respect to the incoming velocity, so that ϕout = ϕ∞ + δ. Finally,

v⃗out = v∞

[
cos(ϕ∞ + δ)ûV + sin(ϕ∞ + δ)ûS

]
.

The final heliocentric velocity will be:

V⃗out = v⃗out + V⃗ =
[
v∞ cos(ϕ∞ + δ) + V

]
ûV + v∞ sin(ϕ∞ + δ)ûS .

This can be written as
V⃗out = Vout (cosαoutûV + sinαoutûS) .

After some algebra,

Vout =
√
v2∞ + V 2 + 2v∞V cos(ϕ∞ + δ),

αout = arctan

[
v∞ sinϕ∞

v∞ cos(ϕ∞ + δ) + V

]
,

where v∞, ϕ∞, and δ are given by the data V , Vin, α, and rP , as

v∞ =
√
V 2 + V 2

in − 2V Vin cosα,

ϕ∞ = arctan

(
Vin sinα

Vin cosα− V

)
,

δ = 2arcsin

 1

1 +
rP
µ

(
V 2 + V 2

in − 2V Vin cosα
)
 .
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3 Electromagnetism

Figure 4: Sketch of the rotating ring and the direction of the external constant magnetic field.

A thin copper ring rotates in free space about an axis perpendicular to a uniform magnetic field H⃗0,
as it is shown in Fig. 4. Its initial frequency of rotation is ω0.

Data: σCu = 58.7× 106 S/m, ρCu = 8.9 g·cm−3.

1. (10 points) Calculate the time it takes the frequency to decrease to 1/e of its original value
under the assumption that the energy goes into Joule heat, for H0 = 15.9 kA·m−1 and a radius
for the ring a = 1 cm.
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Solutions

1. (10 points) Calculate the time it takes the frequency to decrease to 1/e of its original value
under the assumption that the energy goes into Joule heat, for H0 = 15.9 kA·m−1 and a radius
for the ring a = 1 cm.

The first thing to calculate is the voltage developed in the wire while rotating with angular
frequency ω applying Faraday’s law:

E = −dφB

dt
= µ0H0πa

2ω sinωt.

From E it can be calculated the current in the ring I:

E = IR,

where R is the electrical resistance:

I =
µ0H0πa

2ω sinωt

R
.

The average power loss to Joule heating per cycle is:

P = ⟨I2⟩R =
(µ0H0πa

2ω)2

2R
.

The source for this heating is the kinetic energy of the ring:

Ekin =
Iinω

2

2
,

where Iin is the moment of inertia about the axis of rotation of the ring:

Iin =
ma2

2
,

with m the mass of the ring.

The power loss is due to the reduction in kinetic energy:

d

dt

(
ma2ω2

4

)
= −(µ0H0πa

2ω)2

2R
.

The solution of this equation is:
ω = ω0e

−t/τ ,

with

τ =
mR

(µ0H0πa)2
.

The electrical resistance is:

R =
2πa

σA
,

with A the cross section of the wire that forms the ring. On the other hand, the mass of the
ring is:

m = 2πaAρ.

Then:
mR =

ρ

σ
(2πa)2.

Hence τ becomes:

τ =
4ρ

µ20H
2
0σ

= 1.5 s.
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4 Quantum Control

Figure 5: Sketch of the three-level system considered in the problem.

Quantum control is the field that studies how to manipulate quantum systems to optimize quantum
processes. We want to control transitions between the initial, intermediate, and final states (|i⟩, |e⟩,
and |r⟩, respectively), as shown in Fig. 5. In resonant conditions, when the photon frequency matches
the energy difference between the excited |e⟩ and initial |i⟩ state, and the energy difference between
the |i⟩ and |r⟩ states is small (ℏ∆ω ≈ 0), a single laser pulse E(t) can drive both transitions |i⟩ → |e⟩
and |e⟩ → |r⟩ (typically referred to as the Rayleigh-Raman line).

Under very general approximations, we can write the Hamiltonian in the interaction picture as

Ĥ(t) = −Ω(t)

2

(
|i⟩⟨e|+ |e⟩⟨i|+ |e⟩⟨r|+ |r⟩⟨e|

)
,

where Ω(t) = µE(t)/ℏ, the so-called Rabi frequency, represents the coherent interaction between the
field and the system. The time-dependent Schrödinger equation (TDSE) can be solved analytically,
with time-evolution operator mapped onto the matrix (with the implicit basis order: |i⟩, |e⟩, |r⟩):

U(t, 0)
.
=


cos θ(t) + 1

2

i sin θ(t)√
2

cos θ(t)− 1

2
i sin θ(t)√

2
cos θ(t)

i sin θ(t)√
2

cos θ(t)− 1

2

i sin θ(t)√
2

cos θ(t) + 1

2

 ,

where θ(t) =
∫ t
0 Ω(t

′)dt′/
√
2 is the mixing angle of the superposition state that is being formed. After

the pulse is switched off, the pulse integral or pulse area, A ≡
∫∞
0 Ω(t)dt =

√
2θ(∞), is the only

external parameter that controls the final state of the system.

1. (4 points) Proof that U(t, 0) is the solution of the TDSE. Consider units of ℏ = 1.

2. (1.5 points) Calculate the maximum value for the transition probability from state |r⟩ to state
|i⟩. What values of A maximize the probability? This choice represents maximizing the yield of
the Raman transition.

3. (1.5 points) Calculate the maximum value for the transition probability from state |e⟩ to state
|i⟩. What values of A maximize the probability? This choice represents maximizing the yield of
the electronic absorption.

4. (3 points) Find the initial state |ψ⟩0 = ci |i⟩+cr |r⟩ that should be prepared in order to reach |e⟩
with certainty or with null probability (either maximum control or transparency, respectively).
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Solutions

1. (4 points) Proof that the given U(t, 0) is the solution of the TDSE. Consider units of ℏ = 1.

The time-evolution operator is defined through its action on the wave function, |Ψ⟩t = Û(t, 0) |Ψ⟩0.
From the TDSE, ∂t |Ψ⟩t = −iĤ(t) |Ψ⟩t (using units with ℏ = 1), it follows that ∂tÛ(t, 0) =

−iĤ(t)Û(t, 0). In matrix form, deriving ∂tU(t, 0) (with θ̇ = Ω(t)/
√
2) we find

∂tU(t, 0) =
Ω(t)√

2

 − sin θ/2 i cos θ/
√
2 sin θ/2

i cos θ/
√
2 − sin θ i cos θ/

√
2

− sin θ/2 i cos θ/
√
2 sin θ/2

 .

In the basis {|i⟩, |e⟩, |r⟩}, the Hamiltonian can be written as

Ĥ
.
= H = −1

2
Ω(t)

 0 1 0
1 0 1
0 1 0

 .

Then

−iH(t)U(t, 0) = i

2
Ω(t)

 i sin θ/
√
2 cos θ i sin θ/

√
2

cos θ i
√
2 sin θ cos θ

i sin θ/
√
2 cos θ i sin θ/

√
2

 ,

which is identical to ∂tU(t, 0).

2. (1.5 points) Calculate the maximum value for the transition probability from state |r⟩ to state
|i⟩. What values of A maximize the probability? This choice represents maximizing the yield of
the Raman transition.

The probability to reach |r⟩ from |i⟩ at final time is given by the complex square of the matrix
element U31, as P (∞) = U∗

31U31 = [cos θ(∞)− 1]2 /4 = sin4 (θ(∞)/2). It is therefore possible
to reach state |r⟩ with certainty if θ(∞)/2 = A/(2

√
2) = (2n + 1)π/2, with n ∈ Z. Maximum

population transfer requires the pulse area to be A =
√
2(2n+ 1)π, with n ∈ Z.

3. (1.5 points) Calculate the maximum value for the transition probability from state |e⟩ to state
|i⟩. What values of A maximize the probability? This choice represents maximizing the yield of
the electronic absorption.

The probability to reach |e⟩ from |i⟩ at final time is given by the complex square of the matrix
element U21, as P (∞) = U∗

21U21 = [sin θ(∞)]2 /2. A maximum probability of 50% can be
achieved when θ(∞) = A/

√
2 = (2n + 1)π/2, with n ∈ Z, for which A = (2n + 1)π/

√
2, with

n ∈ Z.

4. (3 points) Find which initial state |ψ⟩0 = ci |i⟩ + cr |r⟩ must be prepared such that one can
reach state |e⟩ with certainty or with null probability (either maximum control or transparency,
respectively).

To reach state |r⟩ with certainty from a superposition of |i⟩ and |r⟩, we need

U

 ci
0
cr

 =

 0
z
0

 ,

where z is a complex number of modulo 1. Then, z = U21ci + U23cr = i sin θ(∞)(ci + cr)/
√
2

and

z∗z =
1

2
sin2 θ(∞)

[
|ci|2 + |cr|2 + 2Re(cicr)

]
= 1 ,
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for which we need to make sin2 θ(∞) = 1 and
[
|ci|2 + |cr|2 + 2Re(cicr)

]
= 2. The first condition

requires, as in the previous case, that A = (2n + 1)π/
√
2, with n ∈ Z. The latter is only

possible if we have maximum constructive interference, that is, Re(cicr) = 1/2. This forces
ci = cr = eiα/

√
2. We need to prepare initially the totally symmetric superposition. Then, the

term in the square parenthesis is equal to 2, and z∗z = 1.

To achieve transparency conditions, we need to cancel the transfer probability (destructive in-
terference), for which z = U21ci + U23cr = i sin θ(∞)(ci + cr)/

√
2 = 0. We thus need cr = −cr.

Alternatively, we can find conditions where sin2 θ(∞) = 0, for which θ(∞) = nπ and hence
A =

√
2nπ, with n ∈ Z, regardless of the initial state. This is an obvious solution because,

e.g. if we do not use a laser (A = 0), the system can not leave the initial state. However, by
preparing the superposition state |ψ⟩0 = (|i⟩ − |r⟩)/

√
2 we can guarantee that the system will

not be excited, regardless of the pulse features.
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5 Solid State Physics

The electronic band structure in solids is related to the quantum states of an electron in a periodic
potential. The electron wave function corresponding to an eigenstate, ψ(r⃗), must satisfy the Bloch
theorem, i.e.,

ψ(r⃗) ∼ eik⃗·r⃗u
k⃗
(r⃗),

where u
k⃗
(r⃗) is a periodic function, i.e., u

k⃗
(r⃗ + R⃗) = u

k⃗
(r⃗), where R⃗ is a lattice vector.

A simple one-dimensional model to describe electron states in a periodic potential corresponds to
approximate the potential U(x) by

U(x) =

∞∑
n=−∞

aV0δ(x+ na),

where a is the lattice parameter.

1. (4 points)Demonstrate that the dispersion relation between the energy levels ϵ and the wavevec-
tor k is given by

cos ka =
κ

q
sin qa+ cos qa,

where ϵ = ℏ2q2/2m and κ = αV0. Determine the coefficient α.

2. (2 points) In the low energy limit, demonstrate that

ϵ(k) = E0 +
ℏ2k2

2m∗ ,

where m∗ can be considered as the electron effective mass in the presence of the periodic poten-
tial. Obtain an expression for m∗ in this limit, and verify that it can be bigger, smaller or equal
to m.

3. (2 points) Calculate the gaps between the energy bands assuming that V0 ≪ ℏ2/ma2 (weak
potential limit).

4. (2 points) Calculate the bandwidth corresponding to the lowest band in the limit V0 ≫ ℏ2/ma2.
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Solutions

1. (4 points)Demonstrate that the dispersion relation between the energy levels ϵ and the wavevec-
tor k is given by

cos ka =
κ

q
sin qa+ cos qa,

where ϵ = ℏ2q2/2m and κ = αV0. Determine the coefficient α.

The general solution is of the form

ψ(x) = Aψright(x) +Bψleft(x),

where

ψleft(x) =

{
eiqx + re−iqx, x ≤ 0

teiqx, x > 0
,

and

ψright(x) =

{
te−iqx, x ≤ 0

e−iqx + reiqx, x > 0
,

where the state energy ϵ is set by ℏ2q2/2m. Imposing Bloch’s theorem,

ψ(x+ a) = eikaψ(x),

dψ

dx
(x+ a) = eika

dψ

dx
(x).

Evaluating these two equations at x = −a/2 one obtains two homogeneous equations. The
condition for a non trivial solution yields

cos ka =
1

2t
e−iqa +

(
t2 − r2

2t

)
eiqa.

We now need to solve for t and r for a delta-like potential. Imposing continuity of the wavefunc-
tion at x = 0 and discontinuity of the derivative due to the delta potential, we obtain

r =
κ

iq − κ
,

t =
iq

iq − κ
,

where κ = mV0a/ℏ2. Substituting in the dispersion relation, we finally obtain

cos ka = cos qa+
κ

q
sin qa.

2. (2 points) In the low energy limit, demonstrate that

ϵ(k) = E0 +
ℏ2k2

2m∗ ,

where m∗ can be considered as the electron effective mass in the presence of the periodic poten-
tial. Obtain an expression for m∗ in this limit, and verify that it can be bigger, smaller or equal
to m.

We need to consider ϵ, q, and k → 0. In this limit, we can consider the approximations
sin qa ≈ qa − (qa)3/6, cos qa ≈ 1 − (qa)2/2, and cos ka ≈ 1 − (ka)2/2. Then, substituting
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these approximations in the last equation of question 1, and grouping terms in q2, we can ex-
press ϵ = ℏ2q2/2m as

ϵ =
ℏ2k2

2m∗ + E0,

where

m∗ = m
(κa

3
+ 1

)
,

E0 =
ℏ2

ma2

 κa
κa

3
+ 1

 .

This result shows that m∗ can be larger or smaller than m depending on the sign of V0.

3. (2 points) Calculate the gaps between the energy bands assuming that V0 ≪ ℏ2/ma2 (weak
potential limit).

The band limits correspond to cos ka = (−1)m,

cos qa+
κ

q
sin qa = ±1.

The crossing points can be denoted by qa = mπ + δ, with δ ≪ 1 in the limit V0 → 0. We thus
get

cos δ +
κ

q
sin δ = 1.

In the large V0 limit, δ → 0 and we get δ ≃ 2κa/πm. Then, we can get the gap energy ∆ϵ from

∆ϵ = ϵ

(
q =

mπ

a
+
δ

a

)
− ϵ

(
q =

mπ

a

)
,

which yields
∆ϵ ∼ 2V0.

4. (2 points) Calculate the bandwidth corresponding to the lowest band in the limit V0 ≫ ℏ2/ma2.
If V0 ≫ ℏ2/ma2, we have κa ≫ 1. The first band extends from the crossing at positive energy
E0 and the crossing E1. This last one corresponds to qa = π, so that E1 = −ℏ2/2m(π/a)2. The
value of q at E0 is set by

1 = cos q0a+
κ

q0
sin q0a,

so that
κ

q0
= tan

(q0a
2

)
.

In the limit κa → ∞, q0a → π so that q0a/2 ≃ (π − δ)/2, with δ ≪ 1. We get δ ≃ 2q0/κ, so
that q0 ≃ πκ/(aκ+ 2). Then

∆ϵ = E1 − E0 ≃
2ℏ2π2

ma2

(
1

κa

)
.
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6 Quantum Optics

Figure 6: Sketch of the potential energy curve of a 1D molecule.

We assume one electron in a molecule formed by two atoms A and B with a potential energy as given
in Fig. 6, where xA = −xB. We simplify the molecular potential by doing a Taylor expansion around
the atomic sites xA and xB. Hence, the Hamiltonian of the electron is reduced to

Ĥ = − ℏ2

2m

∂2

∂x2
+
mω2

2
(x− xA)

2 +
mω2

2
(x− xB)

2.

1. (2 points) Show that the delocalized states described by the wavefunctions

ψ0(x) =
1√
2
[ψA(x) + ψB(x)] ,

ψ1(x) =
1√
2
[ψA(x)− ψB(x)] ,

are eigenstates with energy E0 = ℏω/2. Note that {ψA(x), ψB(x)} are the atomic ground-state
wavefunctions at sites A and B, respectively.

Hint: You may consider that the wavefunctions at the two atomic sites are well localized, and
do not overlap with the other site. Also, remember the quantum harmonic oscillator solution:[

− ℏ2

2m

∂2

∂x2
+
mω2

2
(x− xi)

2

]
ψi(x) = E0ψi(x),

where

ψi(x) =
(mω
πℏ

)1/4
e−

mω
2ℏ (x−xi)

2
,

with eigenenergy E0 = ℏω/2.

2. (2 points) Now we apply a time-varying electric field E(t) = E0 cosωt to the molecule. The
interaction Hamiltonian with the molecule is described by V̂I(t) = ex̂E(t), where e and x are the
charge and the position of the electron, respectively. Calculate the transition elements:

⟨ψA|x̂|ψA⟩, ⟨ψA|x̂|ψB⟩, ⟨ψB|x̂|ψA⟩, and ⟨ψB|x̂|ψB⟩.

Construct the matrix in the basis {ψA(x), ψB(x)} representing the total hamiltonian, i.e., the
matrix with elements (HAB)ij ≡ ⟨i|[Ĥ + V̂I(t)]|j⟩.
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3. (4 points) During the time-varying electric field, we consider the time-dependent state as
a superposition of our atomic basis as |ψ(t)⟩ = a(t)|ψA⟩ + b(t)|ψB⟩, where a(t) and b(t) are
complex amplitudes. Find the form of a(t) and b(t) if we know that at t = 0 the state is in the
delocalized state |ψ(t = 0)⟩ = |ψ0⟩ = (|ψA⟩+ |ψB⟩)/

√
2.

Hint: The electron state evolves following iℏ ∂
∂t |ψ(t)⟩ = ĤAB(t)|ψ(t)⟩, with solution given by

|ψ(t)⟩ = e−
i
ℏ
∫ t
0 dt′ĤAB(t′)|ψ(t = 0)⟩. This choice represents maximizing the yield of the electronic

absorption.

4. (2 points) The evolving state depends on the frequency of the electric field ω = 2π/τ , where τ is
the period of this field. Find the vector potential amplitude A0 = E0/ω, such that, after a quarter
of a period, the initial state |ψ0⟩ = (|ψA⟩+ |ψB⟩)/

√
2 transforms into |ψ1⟩ = (|ψA⟩ − |ψB⟩)/

√
2

(up to a global phase factor).
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Solutions

1. (2 points) Show that the delocalized states described by the wavefunctions

ψ0(x) =
1√
2
[ψA(x) + ψB(x)] ,

ψ1(x) =
1√
2
[ψA(x)− ψB(x)] ,

are eigenstates with energy E0 = ℏω/2. Note that {ψA(x), ψB(x)} are the atomic ground-state
wavefunctions at sites A and B, respectively.

We apply first the Hamiltonian operator to the atomic wavefunctions {ψA(x), ψB(x)},

ĤψA(x) =

[
− ℏ2

2m

∂2

∂x2
+
mω2

2
(x− xA)

2 +
mω2

2
(x− xB)

2

]
ψA(x)

≈
[
− ℏ2

2m

∂2

∂x2
+
mω2

2
(x− xA)

2

]
ψA(x)

= E0ψA(x),

where we approximate that the wavefunction ψA(x) is negligible at the B site. We have then a
quantum harmonic oscillator. We can do the same for ψB(x). Therefore,

Ĥψ0,1(x) = Ĥ
1√
2
[ψA(x)± ψB(x)] ≈ E0

1√
2
[ψA(x)± ψB(x)] = E0ψ0,1(x).

2. (2 points) Now we apply a time-varying electric field E(t) = E0 cosωt to the molecule. The
interaction Hamiltonian with the molecule is described by V̂I(t) = ex̂E(t), where e and x are the
charge and the position of the electron, respectively. Calculate the transition elements:

⟨ψA|x̂|ψA⟩, ⟨ψA|x̂|ψB⟩, ⟨ψB|x̂|ψA⟩, and ⟨ψB|x̂|ψB⟩.

Construct the matrix in the basis {ψA(x), ψB(x)} representing the total hamiltonian, i.e., the
matrix with elements (HAB)ij ≡ ⟨i|[Ĥ + V̂I(t)]|j⟩.

We define α ≡ (mω/πℏ)1/4 and β ≡ mω/2ℏ. Then

⟨ψA|x̂|ψA⟩ = α2

∫ ∞

−∞
dx e−2β(x−xA)2x = α2

∫ ∞

−∞
dx e−2β(x−xA)2(x− xA + xA).

Because e−2β(x−xA)2 and (x − xA) have different parity, the integral of these two terms is zero.
The only remaining one is

⟨ψA|x̂|ψA⟩ = α2

∫ ∞

−∞
dx e−2β(x−xA)2xA = xA,

where we use the orthonormality of the wavefunction ψA(x). Analogously, ⟨ψB|x̂|ψB⟩ = xB.
Now,

⟨ψA|x̂|ψB⟩ = α2

∫ ∞

−∞
dx e−β(x−xA)2xe−β(x−xB)2

= α2

∫ ∞

−∞
dx e−β(2x2−2x(xA+xB)+x2

A+x2
B)x

= α2e−β(x2
A+x2

B)

∫ ∞

−∞
dx e−2βx2

x = 0,
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which is also zero for parity reasons. Analogously, ⟨ψB|x̂|ψA⟩ = 0. Therefore, the matrix HAB is

HAB =

(
⟨ψA|[Ĥ + V̂I(t)]|ψA⟩ ⟨ψA|[Ĥ + V̂I(t)]|ψB⟩
⟨ψB|[Ĥ + V̂I(t)]|ψA⟩ ⟨ψB|[Ĥ + V̂I(t)]|ψB⟩

)
=

(
E0 + exAE(t) 0

0 E0 + exBE(t)

)
.

3. (4 points) During the time-varying electric field, we consider the time-dependent state as
a superposition of our atomic basis as |ψ(t)⟩ = a(t)|ψA⟩ + b(t)|ψB⟩, where a(t) and b(t) are
complex amplitudes. Find the form of a(t) and b(t) if we know that at t = 0 the state is in the
delocalized state |ψ(t = 0)⟩ = |ψ0⟩ = (|ψA⟩+ |ψB⟩)/

√
2.

The time-evolved state is

|ψ(t)⟩ = e−
i
ℏ
∫ t
0 dt′ĤAB(t′)|ψ(t = 0)⟩

=
1√
2

[
e−

i
ℏ
∫ t
0 dt′ĤAB(t′)|ψA⟩+ e−

i
ℏ
∫ t
0 dt′ĤAB(t′)|ψB⟩

]
.

Because {|ψA⟩, |ψB⟩} are eigenstates of the matrix HAB, with eigenvalues {E0 + exAE(t), E0 +
exBE(t)}, the exponential of the matrix is the exponential of the eigenvalue, and then

|ψ(t)⟩ =
1√
2

{
e−

i
ℏ
∫ t
0 dt′[E0+exAE(t′)]|ψA⟩+ e−

i
ℏ
∫ t
0 dt′[E0+exBE(t′)]|ψB⟩

}
=

1√
2

[
e−

i
ℏ (E0t+exAE0 sinωt/ω)|ψA⟩+ e−

i
ℏ (E0t+exBE0 sinωt/ω)|ψB⟩

]
= a(t)|ψA⟩+ b(t)|ψB⟩,

from which we obtain the form for a(t) and b(t):

a(t) =
1√
2
e−

i
ℏ (E0t+exAE0 sinωt/ω),

b(t) =
1√
2
e−

i
ℏ (E0t+exBE0 sinωt/ω).

4. (2 points) The evolving state depends on the frequency of the electric field ω = 2π/τ , where τ is
the period of this field. Find the vector potential amplitude A0 = E0/ω, such that, after a quarter
of a period, the initial state |ψ0⟩ = (|ψA⟩+ |ψB⟩)/

√
2 transforms into |ψ1⟩ = (|ψA⟩ − |ψB⟩)/

√
2

(up to a global phase factor).

Starting from the calculated time-dependent state |ψ(t)⟩, we factorize the global phase factor

e−
i
ℏ (E0t+exAE0 sinωt/ω),

which renders

|ψ(t)⟩ = 1√
2
e−

i
ℏ (E0t+exAE0 sinωt/ω)

[
|ψA⟩+ e−ie(xB−xA)E0 sinωt/ℏω|ψB⟩

]
.

When t = τ/4, we need the relative phase to be equal to π, i.e.,

−eE0
ℏω

(xB − xA) sin
(ωτ

4

)
=

2exAE0
ℏω

sin
(ωτ

4

)
= π,

in order to obtain eiπ = −1. This is satisfied when

A0 =
E0
ω

=
πℏ

2exA
.
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7 Quantum Information

A finite-dimensional quantum system S is prepared in either state ρ1 with probability p or state ρ2
with probability 1− p.

1. (3 points) What is the maximum average probability Pmax(p, ρ1, ρ2) of correctly guessing the
state of this system using only a single measurement run?

2. (4 points) Prove that a trace-preserving (and Hermitian-preserving) map E is a quantum chan-
nel if and only if

Pmax(p, σ1, σ2) ≥ Pmax[p, E ⊗ I(σ1), E ⊗ I(σ2)],

for all p ∈ [0, 1] and for any pair σ1 and σ2 of density matrices corresponding to a system
composed of two copies of S.

3. (3 points) If ρ1 = 1
4(3|+⟩⟨+|+ |−⟩⟨−|) and ρ2 = |0⟩⟨0| with |±⟩ = 1√

2
(|0⟩ ± |1⟩) and {|0⟩, |1⟩}

forms an orthonormal basis of a qubit system, find the value of p that minimizes Pmax(p, ρ1, ρ2).
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Solutions

1. (3 points) What is the maximum average probability Pmax(p, ρ1, ρ2) of correctly guessing the
state of this system using only a single measurement run?

To distinguish between ρ1 and ρ2, we can divide the set of measurement outcomes X of a general
POVM {x,Ex}x∈X into two complementary subsets X1 ⊂ X and X2 ⊂ X , satisfying X1∪X2 = X
and X1 ∩ X2 = ∅. If the measurement result belongs to X1, we identify the system state as ρ1,
and if it belongs to X2, we identify it as ρ2.

Thus, for the purpose of distinguishing between ρ1 and ρ2, any POVM {x,Ex}x∈X is equivalent
to another measurement {n, Tn}2n=1, with T1,2 =

∑
x∈X1,2

Ex. Actually, by calling T := T1, then
T2 = I− T .

Now, when the true state of the system is ρ1, the state is correctly identified with probability

∑
x∈X1

P(x|ρ1) =
∑
x∈X1

Tr[ρ1Ex] = Tr

ρ1
∑

x∈X1

Ex

 = Tr (ρ1T ) .

Similarly, when the true state is ρ2, the state is correctly identified with probability

∑
x∈X2

P(x|ρ2) =
∑
x∈X2

Tr[ρ2Ex] = Tr

ρ2
∑

x∈X2

Ex

 = Tr [ρ2(I− T )] .

Therefore, the maximum averaged probability of correctly guessing the state is

Pmax(p, ρ1, ρ2) = max
0≤T≤I

{pTr (ρ1T ) + (1− p)Tr [ρ2(I− T )]}

= (1− p) + max
0≤T≤I

Tr (∆T ) ,

with ∆ = pρ1 − (1− p)ρ2. Now, using the spectral decomposition of this operator

∆ =

d∑
j=1

λj |ψj⟩⟨ψj |,

we obtain
Pmax(p, ρ1, ρ2) = (1− p) + max

0≤T≤I

∑
j

λj⟨ψj |T |ψj⟩.

The condition 0 ≤ T ≤ I reads
0 ≤ ⟨ψ|T |ψ⟩ ≤ ⟨ψ|ψ⟩,

and so the maximum probability is achieved when T is a projection onto the subspace spanned
by the eigenvectors associated with the positive eigenvalues of ∆. By ordering them so that these
positive eigenvalues correspond to the first q in the labeling of j, we have T =

∑q
j=1 |ψj⟩⟨ψj |,

max
0≤T≤I

∑
j

λj⟨ψj |T |ψj⟩ =
q∑

j=1

λj ,

and

Pmax(p, ρ1, ρ2) = (1− p) +

q∑
j=1

λj .
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Additionally, we can express this result using the trace norm. To this end, taking into account
that

d∑
j=1

λj = Tr(∆) = 2p− 1 ⇒ (1− p) =
1

2

1−
d∑

j=1

λj

 ,

we obtain

Pmax(p, ρ1, ρ2) =
1

2
− 1

2

d∑
j=1

λj +

q∑
j=1

λj =
1

2

1 +

d∑
j=1

|λj |

 =
1 + ∥∆∥1

2
,

where the trace norm ∥∆∥1 :=
√
∆†∆ =

∑d
j=1 |λj | has been introduced.

2. (4 points) Prove that a trace-preserving (and Hermitian-preserving) map E is a quantum chan-
nel if and only if

Pmax(p, σ1, σ2) ≥ Pmax[p, E ⊗ I(σ1), E ⊗ I(σ2)],

for all p ∈ [0, 1] and for any pair σ1 and σ2 of density matrices corresponding to a system
composed of two copies of S.

According to the previous result, we have

Pmax(p, σ1, σ2) =
1 + ∥∆′∥1

2
,

where

∆′ := pσ1 − (1− p)σ2 =

d2∑
j=1

λ′j |Ψj⟩⟨Ψj |.

Alternatively, by again ordering the positive eigenvalues in increasing order (and assuming there
are q′ of them in this case), we obtain

Pmax(p, σ1, σ2) = (1− p) +

q′∑
j=1

λ′j .

First, consider that E is a quantum channel, i.e., a completely positive and trace-preserving map,
i.e., E ⊗ I maps density matrices to density matrices. Therefore,

Pmax[p, E ⊗ I(σ1), E ⊗ I(σ2)] = (1− p) +

r∑
j=1

µj ,

where µj are the positive eigenvalues of E ⊗ I(∆′), which are now ordered as the first r terms in
the spectral decomposition

E ⊗ I(∆′) =

d2∑
j=1

µj |Φj⟩⟨Φj |.

Thus, the maximum probability after the quantum channel can be rewritten as

Pmax[p, E ⊗ I(σ1), E ⊗ I(σ2)] = (1− p) +
r∑

j=1

⟨Φj |E ⊗ I(∆′)|Φj⟩.

Using the spectral decomposition again, we can split ∆′ as the difference of two positive operators,

∆′ =

q′∑
j=1

λ′j |Ψj⟩⟨Ψj |+
d2∑

j=q′+1

λ′j |Ψj⟩⟨Ψj | = ∆′
+ −∆′

−,
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with {
∆′

+ =
∑q′

j=1 λ
′
j |Ψj⟩⟨Ψj |,

∆′
− = −

∑d2

j=q′+1 λ
′
j |Ψj⟩⟨Ψj |.

We can then write

r∑
j=1

⟨Φj |E ⊗ I(∆′)|Φj⟩ =
r∑

j=1

⟨Φj |E ⊗ I(∆′
+)|Φj⟩ − ⟨Φj |E ⊗ I(∆′

−)|Φj⟩

≤
r∑

j=1

⟨Φj |E ⊗ I(∆′
+)|Φj⟩ ≤

d2∑
j=1

⟨Φj |E ⊗ I(∆′
+)|Φj⟩

= Tr[E ⊗ I(∆′
+)] = Tr[∆′

+] =

q′∑
j=1

λ′j .

Here, we have used the facts that E ⊗ I(∆′
±) are positive operators (since ∆′

± are positive and
E ⊗ I preserves positivity) and that E ⊗ I is trace-preserving. This proves

Pmax(p, σ1, σ2) ≥ Pmax[p, E ⊗ I(σ1), E ⊗ I(σ2)],

for any p, σ1, and σ2, and for any quantum channel E .
This inequality is expected from a physical point of view, since applying a quantum channel
cannot increase the available information about the state of a system.

Conversely, if the inequality holds, we have

∥E ⊗ I(∆′)∥1 ≤ ∥∆′∥1,

for all ∆′. In particular, for p = 1, ∆′ = σ1 is a density matrix, meaning it is a positive operator.
Since the trace norm of a positive operator equals its trace, and E ⊗ I is trace-preserving, we
obtain the following chain of inequalities:

∥σ1∥1 = Tr[σ1] = Tr[E ⊗ I(σ1)] ≤ ∥E ⊗ I(σ1)∥1 ≤ ∥σ1∥1.

Therefore,
Tr[E ⊗ I(σ1)] = ∥E ⊗ I(σ1)∥1,

and hence, E ⊗ I(σ1) is positive for every positive operator σ1, meaning that E is a completely
positive and trace-preserving map.

3. (3 points) If ρ1 = 1
4(3|+⟩⟨+|+ |−⟩⟨−|) and ρ2 = |0⟩⟨0| with |±⟩ = 1√

2
(|0⟩ ± |1⟩) and {|0⟩, |1⟩}

forms an orthonormal basis of a qubit system, find the value of p that minimizes Pmax(p, ρ1, ρ2).

In this case, we express ∆ as a matrix in the basis {|0⟩, |1⟩}:

∆ ≡ p

4

(
2 1
1 2

)
− (1− p)

(
1 0
0 0

)
=

(3p
2 − 1 p

4
p
4

p
2

)
.

The eigenvalues of this matrix are given by

λ1,2(p) =
1

4

(
4p− 2±

√
5p2 − 8p+ 4

)
.

To determine when they vanish, we solve

λ1λ2 = 0 ⇒ 11p2 − 8p = 0 ⇒ p = 0,
8

11
.
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The first solution, p = 0, causes the first eigenvalue to vanish: λ1(0) = 0. The second solution,
p = 8

11 , causes the second eigenvalue to vanish: λ2(
8
11) = 0. Since λ1(1) =

3
4 , λ2(0) = −1, and

λ2(1) =
1
4 , we conclude

λ1(p) ≥ 0, p ∈ [0, 1],

λ2(p) < 0, p ∈ [0, 8
11),

λ2(p) ≥ 0, p ∈ [ 811 , 1].

Thus, the maximum probability can be expressed as

Pmax(p, ρ1, ρ2) =

{
(1− p) + λ1(p) =

1
4(2 +

√
5p2 − 8p+ 4), p ∈ [0, 8

11 ],

(1− p) + λ1(p) + λ2(p) = p, p ∈ [ 811 , 1].

The second-order polynomial f(p) = 5p2 − 8p + 4 has a unique critical point at p0 = 4
5 , which

corresponds to a minimum:

f ′(p) = 10p− 8 = 0 ⇒ p = 4
5 , f(45) =

4
5 ,

f ′′(p) = 10 > 0.

Since p0 >
8
11 , the minimum value of Pmax(p, ρ1, ρ2) for p ∈ [0, 8

11 ] occurs at p =
8
11 . Furthermore,

the probability also attains its minimum at this point for p ∈ [ 811 , 1], so we conclude that the
global minimum is attained at p = 8

11 .
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8 Gravitational Waves

Figure 7: Power spectral density registered by the two LIGO interferometers after the detection of
the GW150914 event in 2025.

Gravitational waves are produced by accelerating massive objects. For example, the groundbreaking
detection of the GW150914 event ten years ago was supposed to be originated on a coalescing binary
of two black holes of masses m1 = 36 M⊙ and m2 = 29 M⊙ at a distance d = 410 Mpc. The general
expression of the gravitational strain h(t, r) is

h(t, r) =
h0
r

ei(Ωtr+ϕ0),

where h0 ∈ R, h0 > 0 is the strain amplitude, r is the distance between source and observer, Ω is the
wave angular frequency, and tr = t− r/c is the retarded time.

Important: In the questions below, please, make sure that you include all the steps necessary to
understand how you have obtained a given equation or expression whenever they will be required.
Unjustified answers will only be partially considered.

1. (1 point) Consider a binary system with masses m1 and m2 in a circular orbit separated a
distance R, and with center of mass at the origin (0, 0). Obtain the positions r⃗1(t) and r⃗2(t) of
the two objects provided the orbit is contained within the XY -plane and the orbital frequency
is ω. Assume that both masses are initially (t = 0) along the x-axis, with the x-component of
r⃗1(0) being r1,x(0) > 0. Use M ≡ m1 +m2.

2. (1 point) By means of Newtonian mechanics, determine the expression of the angular orbital
frequency ω in terms of M , R, and the gravitational constant G.

3. (1.5 points) Construct the gravitational wave tensor h̄ij(t, r). To this end, note that, if the
objects are slowly orbiting, the wave strain can be obtained in the weak-field limit by means of
the quadrupole formula:

h̄ij(t, r) =
2G

c4r
Q̈ij(tr),

where h̄ij(t, r) is the spatial part of the metric perturbation tensor at a time t and distance
r to the source, c is the speed of light in free space, and Qij(t) is the (transverse-traceless)
mass-quadrupole moment tensor. The two upper dots in Q̈ij denote the second derivative with
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respect to time, and, for our configuration, the quadrupole tensor reads as

Qij(t) = µR2


cos2 ωt− 1

3
cosωt sinωt 0

cosωt sinωt sin2 ωt− 1

3
0

0 0 −1

3


where i, j are the indices for the spatial components x, y, z, and µ = m1m2/M is the system
reduced mass.

4. (3 points) Taking into account that the gravitational wave tensor obtained in question 3 can
be recast as

h̄ij(t, r) =

h+ h× 0
h× −h+ 0
0 0 0

 ,

where h+ and h× are the gravitational wave polarizations, determine the expression for the
gravitational wave strain h(t, r) = h+(t, r) + ih×(t, r), and, from it, provide the expressions for
the strain amplitude h0 and the wave angular frequency Ω. Substitute in the latter expressions
the value of ω obtained in question 2. To get an idea of the orders of magnitude involved, provide
the numerical value for both h0 and Ω in the case of a binary black hole with m1 = m2 = 30M⊙
separated a distance R = 500 km. Use G = 6.7 × 10−11 m3 kg−1 s−2, M⊙ = 2 × 1030 kg, and
c = 3× 108 m/s.

5. (1 point) Determine whether, for the frequency Ω corresponding to the example of binary
system considered in question 4, the LIGO interferometers (see Fig. 7) are sensitive enough to
the signals they emit.

Hint: The horizontal axis in Fig. 7 represents the range of frequencies f = Ω/2π at which the
LIGO interferometers are sensitive. Specifically, the power spectral density baseline in both cases
indicates the lowest spectral noise density (proportional to |hmin|2) detected at each frequency.
The highest sensitivity is reached at about 175 Hz, for a spectral noise density of ∼ 10−46 and
hence a minimum amplitude of ∼ 10−23.

6. (1 point) Assuming that the detection threshold is |h| ≳ 10−21, how far away can the system
be for it to still be detected? Express the distance in multiples of a parsec (1 pc = 3.1×1016 m).

7. (1.5 points) Estimate the rate of binary black hole mergers in the universe taking into account
that the first three rounds of observation of the LIGO Interferometers have had a combined
duration of 448 days, and, in this time, 90 signals have been successfully identified. Express the
rate in mergers/Gpc3·yr.
Hint: Assume all mergers behave like the system studied above.
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Solutions

1. (1 point) Consider a binary system with masses m1 and m2 in a circular orbit separated a
distance R, and with center of mass at the origin (0, 0). Obtain the positions r⃗1(t) and r⃗2(t) of
the two objects provided the orbit is contained within the XY -plane and the orbital frequency
is ω. Assume that both masses are initially (t = 0) along the x-axis, with the x-component of
r⃗1(0) being r1,x(0) > 0. Use M ≡ m1 +m2.

We will assume m1 starts at r⃗1(0) = (r1,x, 0). Since it orbits around the origin, its position will
be

r⃗1(t) = ∥r⃗1∥ (cosωt, sinωt) ,

Since the center of mass is (0, 0), we have

m1r⃗1(t) +m2r⃗2(t) = 0 ⇒ r⃗2(t) = −m1

m2
r⃗1(t).

To determine r1 = ∥r⃗1∥ we impose that the separation is R at all times. Then,

∥r⃗1 − r⃗2∥ = r1 +
m1

m2
r1 = R⇒ r1 =

m2R

M
.

So, putting it all together,

r⃗1(t) =
m2R

M
(cosωt, sinωt) ,

r⃗2(t) = −m1R

M
(cosωt, sinωt) .

2. (1 point) By means of Newtonian mechanics, determine the expression of the angular orbital
frequency ω in terms of M , R, and the gravitational constant G.

We consider the magnitude of the gravitational force

FG = G
m1m2

R2
,

and the centripetal force (of each mass with respect to the center of mass),

(Fc)i = miai = miω
2ri =

m1m2

M
Rω2 = µRω2.

Equating the magnitudes of both forces leads to

FG = Fc ⇔ G
m1m2

R2
=
m1m2

M
Rω2 ⇒ ω =

√
GM

R3
.

3. (1.5 points) Construct the gravitational wave tensor h̄ij(t, r). To this end, note that, if the
objects are slowly orbiting, the wave strain can be obtained in the weak-field limit by means of
the quadrupole formula:

h̄ij(t, r) =
2G

c4r
Q̈ij(tr).
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First of all, we differentiate Qij twice with respect to time:

Q̇ij(t) = µR2ω

 −2 cosωt sinωt cos2 ωt− sin2 ωt 0
cos2 ωt− sin2 ωt 2 cosωt sinωt 0

0 0 0

 ,

= µR2ω

− sin 2ωt cos 2ωt 0
cos 2ωt sin 2ωt 0

0 0 0


Q̈ij(t) = 2µR2ω2

− cos 2ωt − sin 2ωt 0
− sin 2ωt cos 2ωt 0

0 0 0

 .

Now, using the quadrupole formula,

h̄ij(t, r) =
4GµR2ω2

c4r

− cos 2ωtr − sin 2ωtr 0
− sin 2ωtr cos 2ωtr 0

0 0 0

 .

4. (3 points) Taking into account that the gravitational wave tensor obtained in question 3 can
be recast as

h̄ij(t, r) =

h+ h× 0
h× −h+ 0
0 0 0

 ,

where h+ and h× are the gravitational wave polarizations, determine the expression for the
gravitational wave strain h(t, r) = h+(t, r) + ih×(t, r), and, from it, provide the expressions for
the strain amplitude h0 and the wave angular frequency Ω. Substitute in the latter expressions
the value of ω obtained in question 2. To get an idea of the orders of magnitude involved, provide
the numerical value for both h0 and Ω in the case of a binary black hole with m1 = m2 = 30M⊙
separated a distance R = 500 km. Use G = 6.7 × 10−11 m3 kg−1 s−2, M⊙ = 2 × 1030 kg, and
c = 3× 108 m/s.

The gravitational strain polarizations are

h+(t, r) = −4GµR2ω2

c4r
cos 2ωtr,

h×(t, r) = −4GµR2ω2

c4r
sin 2ωtr,

so the gravitational strain is

h(t, r) = −4GµR2ω2

c4r
[cos 2ωtr + i sin 2ωtr] =

4GµR2ω2

c4r
ei(2ωtr+π),

from which

h0 =
4GµR2ω2

c4
,

Ω = 2ω.

Substituting into these two expression the value found in question 2 for ω, we finally obtain

h0 =
4GµR2ω2

c4
=

4G2Mµ

c4R
=

4G2m1m2

c4R
,

Ω = 2

√
GM

R3
.
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Substituting the numerical values provided, we find:

h0 =
4× (6.7× 10−11)2 × (6× 1031)2

(5× 105)× (3× 108)4
m6 kg−2 s−4 kg2

m5 s−4
= 1.5× 104 m,

Ω = 2

√
(6.7× 10−11)× (1.2× 1032)

(5× 105)3
m3 kg−1 s−2 kg

m3
= 2× 0.25 103 s−1 = 500 s−1.

5. (1 point) Determine whether, for the frequency Ω corresponding to the example of binary
system considered in question 4, the LIGO interferometers (see Fig. 7) are sensitive enough to
the signals they emit.

In our situation, f = Ω/2π ≈ 79.58 ≈ 80 Hz. The curves around this frequency in Fig. 3
are lower about 10−46, which gives a maximum amplitude of at least 10−23 < 10−21. So, the
interferometers are senstitive enough to the signals requested.

6. (1 point) Assuming that the detection threshold is |h| ≳ 10−21, how far away can the system
be for it to still be detected? Express the distance in multiples of a parsec (1 pc = 3.1×1016 m).

10−21 ≲ |h| = h0
r

⇒ rmax =
h0

10−21
=

1.5× 104 m

10−21

1 pc

3.1× 1016 m
= 4.8× 108 pc = 480 Mpc.

7. (1.5 points) Estimate the rate of binary black hole mergers in the universe taking into account
that the first three rounds of observation of the LIGO Interferometers have had a combined
duration of 448 days, and, in this time, 90 signals have been successfully identified. Express the
rate in mergers/Gpc3·yr.
We will detect any merger that occurs at a distance d ≲ 480 Mpc. This space encapsulates a
sphere of volume

V =
4

3
πR3 = 0.46 Gpc3.

The rate of mergers is then

R =
90 mergers

448 days

1

0.48 Gpc3
365 days

1 year
≈ 150 mergers/Gpc3 · yr.
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