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Rules

Dear contestants, Welcome to PLANCKS 2021!

Here are some rules and information you must read before starting to
solve each problem:

10.

11.

12.

The language used in the competition is English. If you use
another language, it will not be considered.

The contest consists of 12 problems, each worth 100/1200
points. Subdivisions of points are indicated in the exercises.

All the exercises must be handed in separately and only one
PDF per problem. For this purpose, you have different
problem spaces in Moodle.

Please, when scanning your solution to a problem (you can
use for instance CamScanner - Phone PDF Creator), write
your team number on each page.

Make sure that your resolution is readable. Otherwise, the
marking team has the right to not consider and reject the
submission.

If you identify your team through other means that are not
your tfeam number, the submission will be rejected.

When a problem is unclear, a participant can ask, by tagging
a (@Supervisor - Problem X on Discord (where X is the
problem number) for a clarification. If the response is relevant
to all teams, the OC will provide this information to all.

You have 16 hours to submit this problem.

All the resolutions must be submitted before Saturday, May
8th, 12:00 (GMT+1).

Books and other sources can be consulted during the
competition.

The organisation has the right to disqualify teams for
misbehavior or breaking the rules. So please play fair,

because we will know if you have not.

In situations to which no rule applies, the OC decides.

Best of luck!
May the best physics team win!




PLANCKS 2021

Problem 1

Quantum Mechanics

Professor Fatima Mota and Professor Miguel Costa



Consider a charged particle of mass @ and charge i} placed in a 3-dimensional
isotropic harmonic potential of frequency]

Question 1 [30 points]

Assume the particle is placed in a time dependent and spatially uniform magnetic field
| || OF1 o. Using first order perturbation theory indicate the allowed transitions
from the ground state, calculate the correspondent amplitude for transition probability
and show how you could calculate the transition probability (you don't have to carry out
this final calculation).

Question 2 [70 points]

Now consider a system of twenty non-interacting identical particles of mass & and spin
1/2, placed in such an harmonic potential.

a. [25 points] Determine the ground state energy of the system.
b. [45 points] Assume that a constant magnetic field || is applied. Show that
the diamagnetic susceptibility is constant.

Useful information
Remember:

minimal coupling procedure me® == =
the vector potential for an uniform magnetic field may be written as: =

-1 A

You may use the following information for the eigenfunctions of the 3-dimensional
isotropic harmonic potential,inthe & R [ & basis:
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Solvutions

Question 1 [30 points]
The Hamiltonian of the particle in the magnetic field is:
W'Y AN

0 0 1o

N
Q-|'O

We can choose to work in the Coulomb gauge: & ihd 1t In this gauge, the scalar

potential is zero. So we obtain:

o V1o N

O — wY ﬂ 0 n—,O
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The vector potential for the uniform magnetic field may be written as:
0o -0 Y

And we can choose a frame where:
60 6 OEJ06Q
So we obtain (neglecting the coupling between orbital and spin magnetic moments):

sin 1 0 ® 8

I3

0 0 l,('i sin] 00
a
The ground state of the 3-dimensional isotropic harmonic potential has 6 Tand so

the term
n. . . ..
——0 sin] 0L
does notinduce any transition from the ground state. Next we consider the perturbation
quadratic in the magnetic field. In the number representation we have:
® 00 © ®w 0w
where 0 is a constant, and so, in first order perturbation theory we just have to analyze

when the matrix element
OWW & ¢ ¢

MW 0O OO OO OO OO OO
is different from zero. We see that the allowed transitions are:
TNR TG

[nn® ¢nmn

Now we evaluate the transition probability using time dependent perturbation theory
The amplitude of probability, at first order, for a transition between an initial state $@

and a final state S@is given by:
Qow 0 Q



where

and

o)

The amplitudes of transition are equals in both cases, so we just consider the transition
nmmn1® ¢ 1 mnterms of creation and destrution operators:
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Consequently we can write:
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We now do some calculations:
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The transition probability is given by:

Question 2 [70 points]

a. The energy of a particle in a 3-dimensional isotropic harmonic potential of
frequency] is given by:

. . O
(@] € — 0
C

and the degeneracy of each level is, accounting for a factor of 2 for fermionsi  p¥g
each state can accommodate 2 particles. So we have:



So:

(-) 2 particlesinstate € p; soacontributiong  o¥g 91
(-) 6 particlesinstate & ¢; so a confribution@ v¥g 9] ;
(-) 12 particlesin state €  ¢; so a contributionp ¢ XA¢ 2l

So the ground state energy is @ 119

b. Asthe 20 particles occupy completely 3 shells, we haved Y 0 Tmiforeach shell.
Since we have to calculate the correction to ground state energy of the 3-dimensional
isotropic harmonic potential, we have to construct the wave functions for each states
(atotalof 1 + 3+ 6 functions). Now since we are dealing with fermions, the total function
must be antisymmetric with respect to permutation of particles. Since the space
functions are symmetric, spins states must be antisymmetric and so only the state
Y mh) Tneed to be considered. For the pair of particles ‘@nd @

Yomh o = w

Using the information we write for the space functions in the basis st & . For
example, for the ground state and the first excited state of the unperturbed
Hamiltonian, we should obtain:

Ffor the ground level

r %*Qnﬁ‘xmh Mo§o e T o Y mh
C
Efor the first excited level (using the same notation)

s & SQ mh  pha pd SQ mhx pha  pd SQ Tt pha pd sQ mm phy  pd
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And analogously for the second excited state.

The Hamiltonian of the particle in the magnetic field is (ignoring the couplings between
orbital and spin moments, which would in fact contribute to zero):



0 ' 7 .
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Now the correction due to termt & gives zero as we show in the following.

Remember that, using the frame we chosen:

Since the spins functions are antisymmetric in respect to permutations of particles:
CgB t H 0y T

In same way we see that since the orbitals functions have the same coefficient for
symmetric values of m:

mh
O

Dig Lu
ca ca

And as subshells are complete:

csc—”& 0 0 E 8Cq m
So the correction to energy is proportionalto 6 :

’
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and so the magnetization 0 is:
Q0
[oXo)

and so the diamagnetic susceptibility is constant.




PLANCKS 2021

Problem 2

Tight-Binding modelsina
Magnetic Field

Professor Jodo Lopes dos Santos




Introduction

The problem of the spectrum of an electron gas in a magnetic field is addressed by the
minimal coupling prescription

non oA

o L My

o O o p

where Ais the vector potential and the magnetic field is /A 1 "Aglt is not difficult to
show that in that an electron gas in two dimensions, for uniform "A normal to the
electron gas, one has a discrete spectrum of Landau Levels,

Q6

. P -
T szrﬂh dc

where] is the classical angular frequency of electron orbits. Furthermore, each level
has a degeneracy (not counting spin) equal to the number of flux quanta in the sample,

i.e. equalto d OM%o where 0 is the areaand %  "Qthe flux quantum.

In the presence of a lattice potential this problem becomes considerably more
complicated.

A tight binding (TB) model assumes a local basis, with one or more states $6ollin each
lattice unit cell and is defined by two sets of parameters:

A local orbital energies: $6oll oo
A hopping amplitudes between local orbitals: $6e00 %o N

The general state is defined by its amplitudes in this basis

g a (I)S]/ooa o
and for a crystalline lattice, Bloch's theorem can be used to solve for the Hamiltonian
eigenstates.

The magnetic field is introduced by adding complex phases to the hopping amplitudes
(Peierls substitution)

00Q o T

with the only requirement that the sum of phases along a loop is proportional to the
magnetic flux in the area enclosed by the loop. The choice in Fig. 1 corresponds to a
flux in the square of 6 %o

10



& - & 3
t exp(=i 2n ¢/¢ )

Figure 1 — With ¢ real this choice of phase describes motion in a magnetic field perpendicular to the plane
with flux in the square of 6 %o

1. The square lattice

Assume a square lattice with sites] g d, W& "H &"H with non-zero hopping amplitudes
0(0 T only between nearest neighbors. Takem & 0 pondm €& 0 p(b O
unit cells). You may take the site energy to be zero (band center).

1.1.[20 points] You can make a choice of phases to represent a uniform magnetic field
affecting only bonds along@ I f = T i 8Go ahead and do so. Notice that you
break translational invariance only along wdirection. Use Bloch's theorem along wto
reduce the Hamiltonian eigenvalue problem, for each Bloch wave vector Q, to a 1D
tight-binding chain with a on-site energy @ Q that varies along the chain and is
periodic. Determine ® Q .

1.2.[15 points] In realistic situation, the flux per unit cell, 8@ , is much smaller that the flux
quantum. Confirm this by estimating for GD pA the value of & such that 66 %e.
Show that the potential @ "Q, for sensible values of 6, has a wavelength much greater
than the lattice spacing, & Obtain a continuum limit for your TB equation by assuming
that the tight binding amplitudes vary slowly with the index € and can be represented
by a continuous function of wcomputed at the site coordinate @ & @which can be
expanded in a power series. Show that for eachQ, you obtain a Schroedinger equation
in 1D (along &) for a particle in a potential & ¢hQ).

1.3. [15points] Look for solution close to the minimum of the potential. Reduce the problem
to that of an harmonic oscillator and try to prove the following:

A Thelow energy spectrum takes the form

Jl h i T1iplg8 v

T T0 i

Fal e

A if the potential period 0 ®is larger than the width O @ of the
sample, each level has a degeneracy

n o 07N

A The form of the spectrum of Eq. 5 only holds fori L 0 .

11



2. The Graphene Lattice

The case of the graphene lattice brings further complications. The honeycomb lattice is not
a Bravais lattice and has two carbon atoms per unit cell (see Fig. 2). The general state is

$ G W %o @ f %o i
n ok

whererl  &H €&H is a Bravais lattice site, and %o and % are the two local
orbitals in the unit cell at | . In a minimal model the site energies of all local orbitals is
taken to be zero and a non-zero hopping amplitude, 0, (0 ceV) exists only between
nearest neighbors. The magnetic field can be infroduced with phases affecting only the
bonds connecting orbitals with the same €.

Figure 2- Graphene lattice with basic lattice translations

2.1.[20 points] Use Bloch's Theorem to reduce the eigenvalue problem to a 1D chain with
two types of atoms with a space dependent hoppingd Q .

In graphene, the interesting energies are close zero. To obtain these states consider the
following suggestions.

2.2.[20 points] Use a phase change of the local orbitals to reduce the TB
equation of the 8 6chain to the form

T Q 0CAT 6 ¢“— 0 Q o

fo Q O0CAT 6 ¢&¢“— &
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2.3.[10 points] You can obtain low energy states § SL 0, with slowly varying
wavefunctions in an atomic scale, near values of € such that
QO _ .
¢cos T e p38

%0

Expand the cosine term about €, use a continuum aproximation for the amplitudes as
you did for the square lattice, and obtain equations in the form

T 6 hid | ® . &)
6 Ao T [ w [
were the commutator & M THhd is a c-number. Recall the commutation
relation of harmonic oscillator operators, 1o p, and try to figure out the low energy

spectrum from this.

13



Solvutions

1. The square lattice
Model

A square lattice, with lattice parameter @, of dimensions 0 & along @ with open
boundary conditions (BC) and b ®along wwith periodic BC. Sites

N sd O0&a'H ¢&H
a mBR pé¢ mD  p. Notation® j isamplitude of statein local orbitalatfy g8
Site energiesf f Tihopping Obetween nearest neighbors.

Tight Binding Equations

foR 00 | ® [ ®F W p

With magnetic field with Peierls phases along horizontal bonds:

foR 0Q T ® 5 Q T o 5 0Of O F
Over an elementary square run anti-clockwise

(] L]
o] 0exp @ e% Qe p % 0

Oexp @ o

Thus describing uniform field along 0 6@ 8

Bloch's theorem along 0 adirection

OF ®Q
fd Q o0 QO O 0 0 4 Q T o7
00 QO ® Q ccos QN EF% O Q

T @Q oo o0 0 ® 1

For each Qthis is a TB hamiltonian for a 1D chain with onsite energy ® Q
cocos QM ¢ € o .

The continuum limit
Period of @ Qinn

¢ 0 % ¢
or

%0

soife L %o or
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6(1')I=f2 & pTmm oM

FordDpm WL t p 1ithe onsite potencial is slowly varying on an atomic scale:
wavelenght of potentiall lattice parameter.

Look for solutions which are slowly varying of an atomic scale @ Q [ ¢hQ where
[ «hQ is continuous in &

. . _ () .
w Q [ whQ oA «hQ ?'ﬁ( wQ
® g OhQ ORI «hQ

(o
Q

T TahQ wahQ corahQ o Rl «hQ
or

. . we . .
o Bl «chQ ¢cop cos QO ¢ e [ «hQ T [ ahQ
00

Furthermoreif 0 0 thereis only one minimum inside ribbon for

. Qe Q0
€ ——— —U
c C
o “0
m Q C__
W L
For states near minimum
Qhm ¢ T._ Tt
G %o
. e J00
wQ o
Qe
TQ “ ° “()\) wWe p.[u ¢ W a)
P cos G W%o G W %o C %o w
SO
WP TO 0 — ® ®Q [ GO
5 % [ T

1 D harmonic oscillator

o Tca®  o®d

. 0
Loy T —
W %o
., 0 - po .
] l.u T o —0
a‘w %o 3 %0
or
, Ll . 6 ¢20Q6 Q6
o] T O0— T — T
%o %o a®Q a’
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The characteristic length scale of harmonic oscillator wave functions

o) e &)} 2 %o P . %o

b

z

A [T "(A)
& 2 ™ O C .

The expansion of the cosine, only works if

or

In that limit we find evenly spaced states of energy and only for states with energy
smaller than 0

iol Lo

or

o|°\°
S}

In this limit the spectrum is a series of evenly spaced states of energies

. . P
10 & = 9
C

with a degeneracy correponding to the Qvalues
¢“Tw 0 0 0
[y (VYY) 0
2. The Graphene Lattice

Phases

We start by setting up the TB equations with Field

TR Owp W

S: Ex
e e

Ty 0w p P i

Next we choose gauge by adding phase along bonds between sites of same &

TR 0Q T O Op Q 7
D 5 T

Q

e €

T 0Q T &

Notice that

Bloch theorem along H:
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W R w QQ
and
T Q 000 T o O o 9 Tow
T 60 To v o0 Tow
FH Q T 9 9 T 6% o 10
T Q Q 7 QQ 7T o7 &
This has the form
O Q Qo o 0
fo Q ONH QO a 0
6@ o 7 @aQ 7 o0 Tcos — & ‘-
%o
So
fo Q 0¢Q Tcos — £ — 00 o 0
%o
Tw Q 0c¢Q Tcos — €' 0 Q O 0 8
%o
If we define
r " 4 pQ TaQ
T/ \ TQ(I)\“. ¢ 7 X, B 7
Tw Q occos? s% p Q r Q p Q r
Q6 . B
O p Q T qcos — &“—7T7 Q7 Q
%o
and
o pQ TH Q

5%, 1 ¥, v 7, TQ(I)\ N N
T Q opQTchcos?s‘erer

1
%0

and the equations reduce to

s \ TQ(I) \ ° T T o

T A 0ccos — &'~ M [ B w
C %0

7 0 ccos ? £ %r o [ I ©

These equations have slowly varying solutions of low energy near

Q0 .

¢cos < £ “% p
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Expanding about that point

QO o, - VO, » w B -
Geos C ® %o Geos QO %o W %o
M 13 m’r 13 ._
p sin “Jo 5 C %
oo o
C () G %o
We can write the eigenvalue equations as
o OB Bo Mo
[ [ % O [
T o ow hr Gw Mo%Tf
Or
Tt 6 ¢hh T r
6 dhh n I [
5 G o & Mo ®
© Q % @
5 G ‘ QTL g @ @
0 0 Q %o
“ o I)I_._
oho ¢‘o 0%0
w PP %o,
O < ——0
0 c“ MO..
o p
and
2 1 m_. n (I)(ﬂ\i-ﬁ |— T |—
o o— -
% & ofm noof i
This prompts the solution
Tt (I)(}:ﬁ-h L4 =
e, [ ° I/ls °
w ohh T

And the spectrum is

e ae— . P
Vo w¢*Mo—e Yvou —Ucge
T C % P C

To connect with results as presented in the literature, we note that the area of the
elementary hexagon is Vo ¢, and
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PLANCKS 2021

Problem 3

The evolution of accretion disks

Professor Jorge Gameiro




Introduction

The stars form through the gravitational collapse of dense molecular clouds. The specific
angular momentum of gas in the molecular cloud typically matches the specific angular
momentum of the gas in a circumstellar disk. In many cases the disk is confined so closely
to the disk mid-plane that to a first approximation, one can assume the disk as a two-
dimensional gas flow, the so-called thin disk approximation, where the thickness of the disk,
Oi Li.

e —— LAY

— r Disk mid-plane

Question 1 [20 points]

Assume for simplicity that the disk is optically thick and vertically isothermal, with a
constant sound speed, @, and pressure given by 0 ifd " iRx @ 1 . If the gas is in
hydrostatic equilibrium in the vertical §-direction (no mass motion in this direction),
show that the vertical density profile,” & , is a gaussian profile. In this exercise one can
consider the mass of the disk negligible when compared with the mass of the star, so
the gravitational force is mainly due to the star.

Question 2 [30 points]

The evolution of a flat and geometrically thin disk follows from the equations of mass
and angular momentum conservations. Consider a thin disk characterized by a
surface density 11D (the mass per unit surface area of the disk, 1 " i
"O1 ), radial velocity V. 1Fd and angular velocity 1 .

The angular momentum conservation is given by the equation

. h B a q p RO
= = ) T

is the kinematic viscosity, "Ois the viscous torque exerted by the outer
ring on the inner ring and hasthe form™ ¢* B8 +-48.

Get the mass conservation equation in cylindrical co-ordinates and
together with equation 1 obtain the equation that represents the disk
evolution (assume the angular velocity is keplerian),

S Y R C
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Question 3 [30 points]

In general, equation 2 is a nonlinear diffusion equation, because the kinematic viscosity
" may be afunctionof h and time. If we assume a constant viscosity ' in the full disk,
the equation is linear.

Show that for a constant viscosity disk, the equation is a pure diffusion equation,
hQ | hQ
To Y

and determine the typical timescale of the disk evolution (also called the viscous
timescale). [Hint: Consider2  ¢OF and £ ofc 12]

In your opinion, how could the disk evolution timescale be obtained from observations?

Question 4 [20 points]

In the previous questions we have assumed that the mass of the disk is negligible when
compared with the mass of the star. Here, we want to discuss the validity of this
assumption. As the disk is very large, for simplicity we approximate the disk by an
infinite sheet with constant surface density and thickness 'O Show that the mass of
the disk is not negligible when

0 O

U Y

[Hint: Determine the gravitational acceleration above the sheet due to the mass of the
disk and compare this acceleration with the vertical component of the stellar gravity at
a O
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Solvutions

Question 1 [20 points]

Consider the vertical hydrostatic equilibrium

Qo |
We ignore any conftribution to the gravitational force from the disk. In this case, the
"d) z

vertical component of gravity is given by "Q = a

Forathindisk &L 1,the previous equation becomes

B

o o
P ac

‘l (¢
which integrates to give

ik 7 it T o

with( GFm, and §

‘l (e}
Question 2 [30 points]

Angular momentum conservation equation

=1 i 49 0w —

h T . , p .
'FO 'ﬁ cu

RO
F
and™©O ¢ B8 +9

The mass conservation equation in cylindrical coordinates is

.h R
i * 7 i W T v
The angular momentum equation can be written as
T, T, h , h, p RO
! — - i 0= — =
o o IR ¢
0
h " B Ce P aeP p FO
b I it = i M= = i ——
R ¢ Mmoo pe Rexg th R
(the second term is zero becausei mdoes not depend on time) and so
L p FO
I =1 —_——
(‘O-F. cu -F. (p
We can rewrite the mass conservation equation 5using the equation 6 and obtain
. h h p THO
' R o1 on

By developing this equation we obtain
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h TH ¢ h -
' BRI A !
Taking the angular velocity as keplerian, "d.7 7, wefinally obtain the result
1 gi ipki 1o PTe X
T i Hh

Question 3 [30 points]

With the change of variables 'Y ¢i ¥ AT AQ ofct'Y, the partial derivative in
equation 7 can be written as

h RY h o¢h

— — — * — — —
h TH RY H  YRY
and we get
o 1T¢h Yc¢h Y
EEVEGVE Y, — =y Hot —
Y YRY C¢YRY C

and so the evolution equation takes the form of a diffusion equation

-h+
o

Q HNQ

= O—

To Y

with the diffusion coefficient O p ¢¥Y . The diffusion tfime scale across a scale @ "Ys
WY TO. If we convert this scale on the surface density spread on a radial scale @ iwe get

Gl W °T .
Question 4 [20 points]

We have calculated in question 1 the vertical component of the gravity due to the star

a

z
o

Qi 0 wi
The gravitational acceleration above the sheet due to the disk is given by the expression
.‘% ,Q ..Qi 'rgx“ “O

which is independent of height (we assume that the disk is large enough that we can
take it as infinite). There are several form to determine the above result, for example
using Gauss's theorem.

By calculating the ratio of gravitational acceleration caused by star and disk one gets

"Q Qi a0 _

Qi oD a
We are looking for the case when "Q 'Q"Qi TQ‘% i 0 wlhe disk mass at
adistancel isroughly 0 gilg  “1¢ and & "Q so the condition is
0 qqi Qe 9

0. i




PLANCKS 2021

Problem 4

Fluids and Fourier Transform applied
to Solid State Physics

Professor José Manuel Moreira



1. An empty sphere inside a fluid

A spherical hole of radius 'Y (see Fig. 1) suddenly forms in a perfect incompressible fluid
(specific mass ”; weight negligible). The radius of the hole is small compared to the
dimension of surrounding fluid.

Figure 1- Spherical hole forming in a perfect incompressible fluid
1.1.[32.5 points] Prove that the time it takes for the fluid to completely fill the hole is
o Qi
cn Y Fi p
with ] corresponding to the pressure at "infinity”.
1.2.[17.5 points] In order to calculate this time, we need to evaluate the integral:
Qi
———
Y A p

Your taskis to find the value of this integral in terms of beta or gamma functions. After
that, choose your favorite numerical integration method and find the numerical value
for this same integral and compare both. Hint: use the normalization®w 1 7Y .

You can do the numerical iterations by hand or you can put your
computer to do them for you, using a programming language
like Python or a similar one.
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https://www.python.org/downloads/

2. Polarization field

Polarization is the vector field that expresses the density (674 ) of permanent or
induced electric dipole moments in a dielectric material. When we apply an external
electric field, the molecules of the material will acquire an additional electric dipole
moment and the medium is said to be polarized. In a first approximation, the second
order differential equation that relates the polarization of a material to the applied
electric field can be written, in the time domain:

Q0 Q0 516 11 0¢
B F,QOTU 17 0 ] 00O

where] 1 -9 — and 0 the number of charges per unit volume. In

metals’  T1tand for anisotropic non-polar dielectric’ is theoretically p¥o.

As we know, Fourier transforms, direct and inverse, and convolution integrals are one
of the most valuable theoretical tools of physicists and engineers. They give us a clear
correspondence between time and frequency domains. One can choose a domain to
solve a problem (time or frequency domain) allowing us to do the math in the easier
one. The equation 3 can be written in the frequency domain as:

01 Y1 07
where Y1 is the tfransfer function (susceptibility) of the medium. In the general case,
susceptibility is a tensor but in this exercise we consider it a scalar quantity.

2.1.[20 points] In the limit of[ © 11, find expressions for the real and imaginary parts of
Y1 ] o] Q.7

2.2.[7.5 points] In this limit, find the response of the system to an applied electric field
that is zero for & Tmand O for ® 1 (Heaviside function). Plot 0 & and comment
physically the result.

2.3.[22.5 points] If [ 1, with —L p, comment on the amplitude of the resultant

oscillation, its energy and corresponding oscillation frequency. Sketch the graphs
for different values of increasing| (always obeying the condition] L 1 ). What is
the value of 0 when 6© Hs? Neglect irradiated electromagnetic energy and all other
decay modes due to inferactions with other particles.
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Solutions
1.1 [32.5 points]
v Vil U T
The Euler equation in spherical coordinates:

LU pH
T "R wmh

Fromnt® m(continuity equation)in spherical coordinates:
i Qo
From the above we get

pPQQ T pH

00 "R mh

Integrating this equation betweenY 0 'Y 0 'Y and infinity leads to

QQ p P
8 Po; )0 P
Qo 1 vRU
pQQp . N
. TW —
YQo ¢ M
where @ —is the temporal rate of the radius of the hole; the velocity U Hb is zero and the

pressure on the surface of the hole is obviously zero as well. For points on the surface of the
hole, we have:

QO Y owo
Plugging this equation into the former we get:

A6 D
n2H _ —
M

l
All 2

(6)
—16
G

Falie)

Integrating this equation with the initial values @  1for'Y 'Y, one obtains:

where the minus signal ensures the filling of the hole.

Therefore, the total time spent will be:

1.2 [17.5 points] The calculation of the definite integral O | ——="Q"Ycan be

performed numerically. Performing the variable change @ —results in:
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oY S —Qw YO
VMp

One of the most frequently used numerical methods of definite integrals is Simpson's
method. However, in this case the calculation is inappropriate due to the discontinuity in the
upper boundary. To overcome this difficulty we decomposed the integral into two additive
intervals T @0 wand 1o &P . In the first one, Simpson's rule was applied and in the second
one, where the discontinuity exists, the extended midpoint rule was applied (the
computational code was described in python language). The results found are:

8 w7 w7
- —Qw 1@ o qand - —Qw ™ P P
Mp g Vp
so0 T T Qe.
v % ety mo . m
- T - -
S n P n

Note, however, that the integral 'O has its own mathematical expression expressed in
special functions (beta functions or gamma functions). These functions appear in the
theoretical solution of many physics problems:

L
—3 3 — T
¢hin O ® T T X

2.1.[20 points] Using the differential equation given and the relation between Fourier
transforms and its derivatives we get:

Q01 Y110 07 -1 O]
and with Y] —— it follows that
X )
29 Y5

3 S Y W
where ..] is the medium susceptibility.

Using elementary algebra, we get:

i 1 1 QT

and using the dielectric constant definitionv  p .7~

p 'O p 1 1 ar
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The effective resonance frequency can be written as "1 . The imaginary and real

parts of O for’  Tare:
S ) )
P TS r 5
. S
RECR r 5
Ifr © 1, we get
O p !
] 1
and
o 1 Ei— 1 ]
° ] ] M1
1, i o R R I
—I1 E'f ey —=1 1
1 ©°1h 1 ao 1 1 ¢
v v

when 0  Tdescribes the energy dissipation of the system.
Using the last fwo equations and ... for ..$ —

25 25 @Y ? Aoy
o 5 ¢ !

2.2.[7.5 points] The response function 'Y 0 is the inverse Fourier transform of ..]
Since'Y 0 is real, the transform may be expressed as an integral over positive frequencies
only:

AN

YO .1 Ao .1 OBl O

Both terms integrate to give the same result:

- 25 OBPlO® -25 OBl O
And finally:
Lo 29 00 0 OBl o
to get
00 20 p WEDH O
foro T because the fieldis zerowhen 0 1L

The plot of the previous equation can be seen in figure 2 .
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Figure 2-Polarization, a time function

2.3.[22.5 points] Iff 1, with— L p, the general solution would be

06 ..0Q p Ai100

and it can be shown by different methods (eigenvalues, or time domain) that

1 1 -
C
In figure 3 one can see the plot for different values of [ for al p.

It is necessary to note:

M thedifferent time stretches due to the factor] e
1 thedifferent damping duetothe Q ¥ factor
1 the first peak amplitude
1 the asymptotic value for 6° H
P
2x080 4 —— gamma=0.2
—— gamma=0.5
1 —— gamma=1.0
4 —— gamma=1.5
Noko

00 25 50 75 100 125 150 175 200 t

Figure 3-Polarization for! 1. (10 points)
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Problem $

Exoplanets

Professor Nuno Santos



Intfroduction

The 2019 Nobel Prize discovery of the planet orbiting a solar-like star marked, in 1995,
the onset of a whole new area of modern astrophysics. Today, more than 4000
exoplanets have been detected orbiting other “suns”. The results show that planets are
ubiquitous in our Galaxy, but also that rocky planets are likely the most common
among these. Complementary studies are allowing to characterize the planetsin great
detail. The measurement of accurate masses and radii (and thus mean densities) is
setting strong constraints about their internal structure and composition. The detection
of exoplanet atmospheres provides important clues about their nature and formation
processes. The prospects of detecting and characterizing another Earth are now one
of the main drivers for the development of new instruments and space missions by the
main international agencies (ESO, ESA, NASA).

The following questions focus on some aspects of planet detfection and
characterization, but also on some interesting problems and challenges raised by
planet formation models. All questions are independent and can be solved in any
order.

Question 1 [25 points]

One of the main exoplanet detection and characterization methods (the so called
Radial-Velocity method) is based on the measurement of the Doppler velocity of the
star as it wobbles around the center of mass of the star-planet system.

Assume that you have a planet similar to Jupiter, with D10 solar masses, orbiting a
Sun-mass star in a circular orbit. Assume that the orbital period is 12 years, and the
orbital radius of the planet is 5.2 AU (Astronomical Units; 1 AU = 150 10 km). Using

simple principles, derive an expression that relates the Mass ratio (0 70 ) with
the orbital velocity ratio (0 Tw ) of the two bodies around the common center-of-
mass.

Compute the expected orbital velocity of the star (in units of km/s).

Question 2 [25 points]

Assuming that the planet is in thermal equilibrium with the star, and that the energy
received by the planet is rapidly distributed on its surface (i.e., that the planet has
uniform temperature), show that the temperature of the planet is proportional to

Ts' YefO, where Ty, Yg, and O are the temperature of the star, its radius, and the
distance between the star and the planet, respectively.

Comment on the physical nature of the proportionality factor.

Question 3 [25 points]

A significant fraction of the known exoplanets are giants, similar
to Jupiter, but orbiting their host stars at very short distances.
This raises several questions about planet formation and
evolution, but also about the very existence of these worlds.
Assume that the giant planet mentioned above is actually at
0.05 AU from a star similar to the Sun, such that its temperature
is 1250K.
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Using simple principles, discuss if the atmosphere of this planet can survive against
evaporation. For simplicity, assume that: 1) the atmosphere of a Jupiter-like planet is
composed of hydrogen, 2) the planet has half the mass of Jupiter but the same
average density (Data for Jupiter: M=1.898 10 kg, R=70000km).

Question 4 [25 points]

Planets are formed in disks of gas and dust that are formed as the outcome of the star
formation process. In these disks, solids are expected to grow though collisions over
timescales of several million years, eventually leading to planet size objects.

One of the biggest challenges of the planet formation process is related with the fact
that, in a disk, the gas (that composes 99% of the mass of the disk) and the solids do
not rotate at the same velocity. This leads to a gas drag that will make small, meter-
sized pebbles to fall into the star in timescales of a few thousands of years.

Assume you have a disk of gas and dust whose density and temperature decrease with
distance to the star. Show that, in such circumstances, you expect the velocity of the
gas to be given by

where "O0fi and Qis the speed of sound.
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Solvutions

Question 1 [25 points]

M.

Figurel-Problem scheme

Dw 0 Wt

£ &

0
0

C‘l c-
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lf0 pmnom 0 7w
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Question 2 [25 points]
The power received by a planet is given by:

ANY

0 81T AL” -
YT/O

whereY, is the stellar radius and "Ythe tfemperature, and’'Y and Oare the planet radius
and the distance to the star, respectively.
0 ®TAY

In equilibrium:

¥ 4 vy Y.
t
V] V] c,o

The proportionality is related to the planet’s Albedo.

Question 3 [25 points]

For a planet to keep its atmosphere:

0 0
Escape velocity 0 atthe limit:
00 &
Pao .
C Y
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v} T
For a m@®0 planet,if” " , we can estimate:
Y ux pmQd
t 0 T Qar
Let's now assume that "Y pC Wi
o
o oy Pa v
q S
If the atmosphere is made of O, 0 TQGN .

Since 0 L U0 wecanexpectthe planetto retain its atmosphere.
Question 4 [25 points]

We have the following situation:

e(ﬂuﬂn“- ¢ il g

< -~ V= F Adreal
R s g

Figue 2-Problem scheme

The master equation is:

0 00 pH
i i MmTF P
which is a sum of two effects: — — takes into account the solid component and —
—-— accounts also for the gas. For solids,— —1+t 0 i, where —
Knowing that —andf @, from equation 1:
0 A
0 i
because— —(when doing the integration).

So:
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and

making

where

N

0
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PLANCKS 2021

Problem 6

Cosmology

Professor Orfeu Bertolami



Introduction

The simplest cosmological model scientifically non-trivial can be obtained by
Newtonian considerations assuming that a mass, 0 , is isofropically distributed in a
volume, @, around an arbitrary origin. Suppose that, at a given time, a generic galaxy
with mass @ is at a distance ®© 0 from the origin.

Question 1 [16 points]

Use Newton's Second law and the law of Universal Gravitation to obtain an equation of
motion for o .

Question 2 [16 points]

Show that this equation of motion admits the integral:

p. OO Q
—-W — —h
S W (q

where Qs an integration constant.

Question 3 [16 points]

Assume that the mass 0 is made up of homogeneously distributed pressureless dust
with density,” 0, within the radius, © 0 , of a sphere. Insert this mass into the previous
equation to obtain an expression for the square of the expansionrate, O @I interms
of the density. This equation is known as Friedmann's equation and was obtained by
the Russian polymath Alexander Friedmann (1888-1925)in 1922 in the context of the
Theory of General Relativity, which means that this equation is more general than the
Newtonian considerations assumed for the above derivation (small velocities, UTL p,
and weak gravitational fields, WI®d L p, where wis the gravitational potential).

Question 4 [16 points]

Assume that the mass 0 is constant to obtain a relationship between” & and ® 0 .

Question 5 [36 points]

In the Theory of General Relativity the integration constant, Q is
associated to the spatial curvature of the Universe. There are three
possible geometries to consider:

a. Closed Universe for Q 1, which corresponds to a Universe
with a spatial geometry of a three-dimensional sphere, °Y, with
radius of curvature, 'Y @ , related with the above model by
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associated to the volumew 6 ¢“ YO ;

b. Flat Universe for 'Q m which corresponds to a Universe with spatial
geometry of a three-dimensional Euclidean space, O , for which'YO Hy;

c. Open Universe for Q 1, which corresponds to a Universe with spatial
geometry of a three-dimensional hyperboloid, O .

Show that the evolution of the Universe can be understood for these three different
cases rewriting Friedmann's equation as

p. . . Q
-W w o -=h
q G

where ® ® ¢ "G To, drawing the diagram of @ @ as a function of % and
discussing how & 0 evolves as a function of the cosmic time, 0.

Relevant constants:
Newton's gravitational constant: "0 @@ x pm G TQ i

Speedoflight: 0 o p mah

40



Solvutions

Question 1 [16 points]

o 00 &
aw -
w
. 00
()] -
W
Question 2 [16 points]
e 0D,
[V OV) - W
W
Q p, Q "00
—. - W T
Q OC Qo0 W
. 00 0
- —
q W ¢
Question 3 [16 points]
.[ “ .
U —_— w ”
o
let be Ok -,
S S O
-0 —"W
o
(I) ‘ ' ”
® o
Hence,
O LIJ ”
o

Question & [16 points]
0 consti

Question 5 [36 points]

The potential corresponds to @

Graphically:

&
0
C
7" "Oonst
o ©

and the energy to —.
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Figure2-Expansion followed hgollapse.
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PLANCKS 2021

Problem 7

Nanotechnology

Professor André Pereira



Intfroduction

Nanotechnology is an emerging area that revolutionized the end and beginning of the
XX and XXI Century, respectively. This field has already proved many advantages to
improve the level of our society. In particular, Spintronics has a preponderant role in the
growth and fast processors applied to several devices such as laptops, desktops,
workstations, and servers.

One breakthrough was the invention of magnetic junctions constituted by the two
electrodes that are ferromagnetic materials sandwiching a non-magnetic material, all
at the nanometer thickness (Fig. 1). These devices can detect the binary unit (bit) in
computing and digital communications, namely for information storage systems such
as hard disk drive (HDD). The electric current in these devices consists of two partial
currents in a ferromagnetic material, each with either spin-up or spin-down electrons.
Moreover, they can present two different configurations related to the relative direction
of the FM layers (these layers are usually metals).

Figure 3- Two FM materials
sandwiching a non-magnetic
material

Question 1 [15 points]
Explain the working principle of these nanodevices and how they can measure a bit.
Question 2 [20 points]

Consider that the magnetic junction is a spin valve, e.g. the non-magnetic layer is a
metal. What is the expression of the spin valve system's maximum sensitivity
(magnetoresistance's maximum) using the simplest model? [Suggestion: consider the
variation of resistance]

Question 3 [40 points]

Consider now a magnetic tunnel junction barrier (MTJ) in which
the non-magnetic layer is an insulator. Disregarding the
magnetic contribution considering the metal layers, determine
the tunnel current's general expression through the MTJ.
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Question 4 [25 points]

Quantum sensors are another technology gaining extreme relevance. An example
is the quantum dots nanoparticles that can be used as sensors for biomedical
applications.

4.1 Determine the general expression between the bandgap (Eg) of quantum
dots and its bulk counterpart.

4.2 What is expected for the quantum dot's Eg if the simple parabolic band's
curvature presents a strongly curved parabola?
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Solutions
Question 1 [15 points]

Model of 2 channels:

Antiparallel Parallel
magnetizations  magnetizations

e —- Ferramagnet (Co)
Nonmagnetic metal (Cu)
m— —- Ferromagnet (Co)

Resistance
R+, GMR= Ry —Ryy
Rip
R‘IT ................
Magnetic field

Two values of resistance: when they are parallel - state "0"; perpendicular - state
"1". It works like in the following figure:

(L1

Notice that the bit needs to be in the same direction as the magnetic layers.
Question 2 [20 points]

Model of 2 channels

Spin FM NM FM Spin FM NM FM

I- -

-
\

Parallel (left) Y i Yr2i'y

Antiparallel (right) 'Y Y o112
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Final Result
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v | Y

Question 3 [40 points]

Consider two metal electrodes with an insulator of thickness L between them. If
electrodes are under the same potential, the system is in thermodynamic equilibrium
and the Fermi levels of electrodes coincide (Fig. 1).

WaCLIUMm
R T —— level
F
q:'l . [:PI
Fermi
level
! position

metal 1| 18003t00 | petm) 2

Fig. 1. Diagram of MIM system in equilibrium.
j1 and j2 — work function of the left and right metals, respectively.

Let's calculate the transparency of the rectangular barrier. Suppose that electrons of
energy E are subjected to a potential barrier defined by

mha T
Ya o YAm o4 0 (1)
ma 0

Assuming that the total energy Ois less than Y, we have:

0 L z
Fig. 2. Rectangular potential barrier and particle wave function q

The stationary Schr dinger equations can be written as follows
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0 mha T
Qv mWp o (2)
Q  mhg O
where Q g, o) ——— Qrewave vectors, and "Qs the Planck's constant.

The solution to the wave equation at @  Ttcan be expressed as a sum of incident and
reflected waves Agfag OA @D, while solution atd 0 as a transmitted
wave oA @EDa . A general solution inside the potential barrier 1 & 0 is written
as oA @G QA @PMA. Constants@y 6 @ Qare determined from the
wavefunction and continuity conditionat@ manda 0.

The barrier transmission coefficient can be naturally considered as a ratio of the
transmitted electrons probability flux density to that one of the incident electrons.

In the case under consideration this ratio is just equal to the squared wavefunction

module atd 0 because the incident wave amplitude is assumed to be 1 and wave
vectors of both incident and transmitted waves coincide.

0 wd AIEOQ) - — — ET KO (3)

lfQ0I p, then bothAT GH and OE TO® can be approximated to A @3B0 ¥¢ and
(3) will be written as

00 ©OQof - cé Y © (4)
whereO 1Tp - — —

The approximation technique of the Schr dinger equation solution when quasiclassical
conditions are met was first used by Wentzel, Kramers and Brillouin (WKB). This
technique is known as WKB approximation or quasiclassical quantization method.
With this method the barrier transparency is given by

00 °®Qwn; ca Ya 0Qda (5)

For the number of electrons 0 tunneling through the barrier from electrode 1 into
electrode 2, we can write

o . ., O —— Q0 p Q0 QOO0 | 00 &n QO (6)

where "Qand "Qare Fermi Dirac distributions in electrodes 1 and 2, respectively,

€N o). Q0 p Q0 QwO0O M (7)

a>

and O is the maximum energy of tunneling electrons.

Integration of expression (7) can be performed in polar coordinates. Because in the
model under considerationf) 1 1 , O 1 ¥¢d and the total energy isO O
0, by changing variables /| ®¢ if— 1 i "Qiweget
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€N . Q7 Q0 p Q0 Qunm . QO p Q0 QwQO (8)

Substituting (8) in (6), we obtain

OO0, QMO0 O p QO O Qwao (9)

':l >v
The number of electrons tunneling back from electrode 2 into electrode 1 is
calculated in the same way. The potential barrier transparency in the given case will be
such as if positive voltage wis applied to electrode 1 relative to electrode 2.
In this case
0 —. 0000,  "MNQ0 0 Q wp QO O ‘GO (10)
Net electrons flow 0 through the barrieris obviously 00 0 0 .

Let us denote

, 0 —F, Q0 p MO Q0QO,
, 0 —F Q0 Qap Q0 W,
, 0w , | — Q0 Q0 QwaO (11)

T
Then, the funneling current density Ois
L . 00, OO0 (12)

Accordingto Fig. 1,"Y & can be written in the form ™Y &
(5) and using expression (A5) we get

e & . Then, integrating

00 8 Qwnd * <« a O (8)
where ¢ is the average barrier height relative to Fermilevel of the negative electrode:

. — a'Qé

P .
—_ QaQ Q Qa
I p o] XX
At"Y O
Qb oN ™M Qw
, O — Oh O~ Q& (9
mh o
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Combining (8) and (?) into (7), we obtain

Q® Qefs T .+ 0W . 0Qens - 0w
(10)

U

Integrating (10), we get Simmons current equation

0 —+ QA8 =+« + QQoRd * Qo (11)
where| e 0.

Question 4 [25 points]

4.1. In a quantum dot, the movement of electrons is confined in all three dimensions
and there are only discrete QRQRQ states in the Qspace.

bulk semiconductor quantum dot semiconductor

E(k) E(k) w V() o

y
\ / Y|

S— = 5 k
E,(bulk) " lfg(d) o T e

7 ==
,// \\\ =1
i \ g

The charge carriers are confined in all three dimensions and this system can be
described as an infinite three-dimensional potential well. The potential energy is zero
everywhere inside the well but is infinite on its walls. We can also call this well a box. The
simplest shapes for a three-dimensional box can be, for instance, a sphere or a cube.
If the shape is cubic, the Schr dinger equation can be solved independently for each of
the three translational degrees of freedom and the overall zero-point energy is simply
the sum of the individual zero point energies for each degree of freedom:

O j pIY "QFG Q

O g0 oY QFaQ

where Qis the size of the cube edge.

If the box is a sphere of diameter 'Q the Schr dinger equation can be solved by
infroducing spherical coordinates:

O pfq QI Q
A correction should be done considering that the strength of the screening coefficient
depends on the dielectric constant of the semiconductor. An estimate of the Coulomb

term yields

0 pRQ TG - Q
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The final equation is:
0Q 0 ®6aMIGzQ pAIVT - Q

4.2. The strongly curved parabola will change the effect mass to have a low effective
mass and the O will increase.

Appendix

Let us integrate an arbitrary function Q& fromd& tod .

00 Q (A1)
Defining Qs
0 - a0 (A2)
where "Q- average value of a function "Qon the interval from Q tod Q@ &.Then
equation (A1) can be rewritten as
BEQG @ p ——=0Q&(A3)

Considering a Taylor series expansion of the integrand (A3) in and neglecting "Qa

"QT'Q and higher order members, we get

Qaea Q p = =— Q@ (A4)

The second term in (A4) vanishes upon integration, therefore (A4) can be expressed
as

NAQa T "R (AS5)

where the correction factor is

Top —. Q@ "QQa(Ad)
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Problem 8

Cosmological Consequences
of Scalar Fields

Professor Carlos Martins



Introduction

Since the 2012 discovery of a Higgs-like particle at the LHC, we know that
fundamental scalar fields are among Nature's building blocks. Here we will explore
some cosmological consequences of such scalar fields. We will assume homogeneous
and isotropic universes, for which the Friedmann equation is

o0 2 Y O 0
(@) o
where ®is the scale factor, O @Wis the Hubble parameter (the dot denotes a time
derivative), Qis the curvature parameter, and ” is the total density (a sum of those of
the constituents of the universe). We will work in units where @ p. It is also useful to
know the continuity equation

" g0” B dO0p 0 "¢

where N is the total pressure and for convenience we also introduced 0 Q¥ the
equation of state parameter.

Question 1 [20 points]
Consider a scalar field with
” po N R |:)o 'S o/ 1R
Ebo W %' 1 EA)O W %'ho

where w is a generic potential. Calculate the cosmological evolution equation for this
scalar field. Then repeat the calculation for a scalar field with

@ % . . , .
———h n W % p %ot

P %o

where again @ is a generic potential.

Under what conditions can each field dominate the universe and cause its recent
acceleration?

Question 2 [20 points]

Consider the first of the scalar fields in Question 1. Show that if the field speed is small
one can write, to first order,

where 0 and O denote present-day values.

Further assuming a flat universe containing only matter and the
scalar field (with present-day fractional contributions to the
energy density and ), show that the Friedmann equation
has the form
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Question 3 [30 points]

Consider a flat universe containing matter and a cosmological constant, but also a
scalar field which obeys the cosmological evolution equation

&
% 0o 00 — 5 - 'hx

where — and — are constant coupling parameters describing how the scalar field
couples to the matter and dark energy sectors and @ is the present-day value of the
scale factor (you can assume %o ).

Assuming that you can neglect the scalar field's contribution to the Friedmann
equation, solve the above evolution equation and obtain the explicit form of the redshift
evolution of the scalar field.

Hint: Under the above assumption there is an exact analytic solution, which is easiest to
obtain through a carefully chosen change of variables. You should obtain as final result
a combination of logarithmic functions, which is typical for many cosmological scalar
fields.

Question 4 [30 points]

Aninteresting observational consequence of scalar fields is that they lead to a variation
of the fine-structure constant| (a measure of the strength of the electromagnetic
interaction), and thus also to a violation of the Einstein Equivalence Principle (the
cornerstone of General Relativity). For a universe containing only matter and a
homogeneous scalar field (which is also responsible for accelerating the universe), |
has the redshift dependence

— a0k ——— - cQwp U w —=hy

where 0 is the scalar field equation of state parameter,

is the fractional contribution of the scalar field to the energy density of the universe, and
—is another constant coupling parameter.

Calculate the generic explicit form (and redshift dependence) of the dark energy
equation of state parameters that lead to a logarithmic dependence of| ,

Wl :

e a®Iinp aBprm
You may again assume a flat universe. Then calculate the explicit
redshift-dependent form of the Friedmann equation for that generic
equation of state parameter.
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Question 1 [20 points]

The scalar field evolution equations can be found by substituting the expressions for
density and pressure (Eq.3 and Eq.4, for each of the two models) into the continuity
equation (Eq.2). This leads, respectively, to

% 0o — T1(11)
and
— 0O —— TI(12)

To answer the second part, one first needs to obtain the Raychaudhuri equation. The
simplest way to do it is by differentiating both sides of the Friedmann equation (Eq.1).
This will lead to a” term for which one can substitute the continuity equation (Eq.2).
After some simplifications (including re-substituting the Friedmann equation) one finds

- — " of (1d)

The recent universe contains matter (with a density ” ), plus the assumed scalar field.
For the scalar field to dominate the universe, the Friedmann equation requires ” ”
while for the universe to be accelerating the Raychaudhuri equation requires” on

" 1 (recall that matter is pressureless). Therefore for the first model the conditions
are

Cw % ¢” %o 'h Cw %o Q%o'f](14)

while for the second model they are

® %o P %o” h o % — h(15)

Obtaining each of these is worth 4 points (i.e. obtaining both is worth 8 points).
Question 2 [20 points]

For the first of the fields in Part 1 (Eq.3) we can write

PO p - 8196

For a slowly moving field %o L &, and moreover wwill be almost constant in time, so we
can write

p U 9 %'(17)

Now consider the equation of motion for this field, which was obtained in Part 1 (Eq.11).
For a slowly moving field one can neglect the %sterm, and since wis almost constant, so
is its derivative. Therefore we can also write

%o —11(18)

Together, these imply that p 0 @ pF¥O. Normalizing with present-day values
therefore yields
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0 a p p 0L —n(19)
Now let's consider a universe with matter and a scalar field. The redshift (or time)
dependence of each component can be inferred using the continuity equation. It is

useful to write this in terms of redshift rather than time

— O

"11(20)

For matter one has 0 mand therefore” © & © p & while for the dark energy
the behaviour will depend on the explicit form of 0 & . Again normalizing the
Friedmann equation with present-day values, we can write

—_— p & exp 0, ——QwI(21)

To calculate the integral we can now use

p U & p 0 —n(22)

and again since the field is moving slowly (and to first approximation, dark energy can
be assumed to be a constant, i.e. independent of redshift) one can write

p 0 G —n(23)

Finally, calculating the integral leads to

_ o G — (24

Question 3 [30 points]

In order to answer this one first needs an explicit solution for the Friedmann equation in
a flat universe with matter and a cosmological constant. In this case the Friedmann
equation can be written

— p a O a(25)

where for later convenience we defined the function O & . For the moment, it is more
convenient to rewrite this in ferms of the scale factor

o - 0o - 1(26)
This can be solved by the useful change of variables T 0w |, leading to
the equation
® -0 p @ h(27)

which can be easily intfegrated, although one needs to bear in mind that the integration
constant shouldbe®@m 1 Theresultis

T T — ™
— — sinh -0 0 '1(28)
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Using this solution, Eq.(7) can now be integrated analytically twice. The first integral is
% 0 O0— -0 — sinh®d @6'(29)

where for convenience we have defined @ o 'O and the integration constant was
set to zero since one physically expects that %1t TU

One thenintegrates again, being careful to use therelation O ¥ p  &to converttime
and scale factor into redshift. This will finally lead to the solution

%8 C— Inp @ — Ih — 0 aIn ——— 1(30)

where In is the natural logarithm and 'O & is defined in Eq.25. Obtaining this equation
is worth 10 points.

Question 4 [30 points]

The obvious insight here is that in order for the solution of the integral to be alogarithm,
the term inside the square root must be a constant, i.e.

MG p 0  OE 83

where clearly it is beneficial to express them as a function of redshift. The redshift
dependencies of the matter and scalar field components can be gathered from Egs.
20 and 21 (for matter there is an explicit form, for the scalar field only anintegral form).
One then simply differentiates both sides of Eq.31, and after some algebra finds the
following equation

— cp 0 — — 18(32)
I 0 _
0 a h
p
21 ”
— p a p O p & O p «
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