
PLANCKS 2019 Problem Set

Dear contestants, Welcome to PLANCKS 2019

� The language used in the competition is English

� The contest consists of 10 exercises, each worth 10 points. Subdivisions of points are
indicated in the exercises.

� All exercises have to be handed in separately. For this purpose you have been given envelopes.
Please mark each envelope with your team code and the exercise number. Marking the
envelope is necessary for an exercise to be scored

� When a problem is unclear, a participant can ask, via the crew, for a clarification. If the
response is relevant to all teams, the jury will provide this information to the other teams.

� You are allowed to use a dictionary: English to your native language.

� You are allowed to use a non-programmable, not-graph calculator (But scientific is okay).

� No books or other sources, except for this exercise booklet and a dictionary, are to be consulted
during the competition.

� The organisation has the right to disqualify teams for misbehaviour or breaking the rules.

� The use of hardware (including phones, tablets etc.) is not approved, except for watches and
medical equipment. Please leave your phones in an envelope.

� In situations to which no rule applies, the organisation decides. We wish you all the very
best.

May the best physics team win!



Adam Cohen Simonsen, SDU

1 Mono- and Multilayer adsorption
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Adsorption of molecules from the gas phase and onto a solid surface represents an important class
of problems in surface physics. To model the process, some assumptions are usually made: (1) The
surface has a finite number of identical adsorption sites into which molecules can adsorb. (2) The
adsorbed molecules do not interact. (3) Binding is reversible.
First we consider adsorption to form a monolayer on the surface. That is, the formation of mul-
tilayers is not allowed. Here N0 is the number of empty surface sites and N1 is the number of
occupied sites. The partial pressure of the adsorbate in the gas phase is p. The rate constant for
adsorption is ka and the rate constant for desorption is kd. The equilibrium constant is K = ka/kd.

The rate of adsorption is: ra = kapN0

The rate of desorption is: rd = kdN1

(a, 2 points) Assume that adsorption has reached equilibrium. Derive an expression for the
monolayer surface coverage Θ in terms of K and p. Note that Θ is defined as the fraction
of surface sites occupied by adsorbates:

Θ =
Nad

Nsites

-where Nad is the number of surface sites having adsorbates and Nsites is the total number of surface
sites.

(b, 2 points) What is Θ in the limiting situations of high and low pressures p? What
is the characteristic pressure p1/2 where half of the surface sites are occupied?

Next we consider the situation where adsorbing molecules can form multilayers on the surface1.
We define Ni as the number of surface sites having exactly i adsorbates. The same assumptions
(1-3) as above are used. In addition we assume that: (4) The gas molecules only interact with the
top layer of the surface. (5) There is only two types of interactions: (I) adsorbate-surface and (II)
free adsorbate-adsorbate interactions. We therefore define two new rate constants k′a and k′d to
describe the adsorbate-adsorbate interactions. The equilibrium constant for adsorbate-adsorbate
interactions is K ′ = k′a/k

′
d. In order to simplify calculations we define c = K

K′ .

1The model for multilayer adsorption is called the BET isotherm after Stephen Brunauer, Paul Hugh Emmett
and Edward Teller: ”Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc. 1938, 60(2) pp 309-319.
DOI= 10.1021/ja01269a023
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(c, 2 points) Using a recursive argument show that Ni can be written in terms of N0.
Show specifically that for i > 1:

Ni = c(K ′p)iN0 = cziN0

-where we have defined z = K ′p.

(d, 2 points) Next we are interested in finding the surface coverage Θ for multilayer adsorption,
where Θ = Nad

Nsites
, with the multlayer definition of Nad. For multilayer adsorption the total number

of adsorbed molecules is given as:

Nad = N1 + 2N2 + 3N3... =
∞∑
i=1

iNi

The total number of surface sites is the sum of sites having all possible numbers of layers (including
empty sites):

Nsites = N0 +N1 +N2 +N3... =

∞∑
i=0

Ni

Find expressions for Nad and Nsites for multilayer adsorption.
Determine the coverage Θ for multilayer adsorption.

(e, 2 points) Give a physical interpretation of the quantities K ′ and z.
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Sebastian Hofferberth, SDU

2 Quantum Optics
The quantum behaviour of light can be observed in extremely simple optics experiments, with
probably the simplest being a single beamsplitter. An important consequence of the quantization of
light is that single quanta of light - photons - can not simply be split in half in a linear beamsplitter.
Quantum mechanices instead describes the probabilities of each individual photon emerging from
one of the beamsplitter outputs. This in itself already leads to observable results revealing the quan-
tum statistics of photons and allows us to understand the classical Mach-Zehnder interferometer
in terms of single photons.

Exercise 1: The classical beamsplitter

A beamsplitter is simply a partially reflective
mirror, where each of the two input ports is
broken into a transmitted and a reflected part,
as shown in the figure. We consider a lossless
beamsplitter with classical inputs E1 and E2.
The outputs are then given by

E3 = RE1 + TE2, E4 = TE1 +RE2, (1)

where Ei are the (complex) amplitudes of the
input and output light fields, R is the reflection
coefficient, and T the transmission coefficient.
Energy conservation requires that |E1|2 + |E2|2 = |E3|2 + |E4|2. Note, that here we consider
the intensities, while the reflection and transmission coefficients are defined relative to the field
amplitudes.

a) (1 point) Show that energy conservation for the case of only one input light field (i.e. |E2| = 0)
leads to |R|2 + |T |2 = 1.

b) (1 point) Show that the case of equal field strengths on both inputs i.e. E1 = E2 = E) leads to
the condition RT ∗ + TR∗ = 0.

b) (1 point) Show that the above condition leads to an additional phase shift of π/2 between the
fields of the transmitted and reflected components.

Exercise 2: The QM beamsplitter in braket notation

We now consider the case where the input into
the beamsplitter are single photons. Two pho-
ton sources, A and B, emit photons into the re-
spective input modes of the beamsplitter, and
two detectors, C and D detect photons in the
respective output modes. Since the photons are
non-interacting and independent of each other,
we need to assign each photon j an invididual
state vector |x〉j where their state x expresses
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the mode X it is located in. The overall state
for n incoming photons in mode A would thus
be

|ψin〉 = |a〉1 |a〉2 · · · |a〉n , (1)

while a state with photon 1 in mode A and photon 2 in mode B would be

|ψin〉 = |a〉1 |b〉2 , (2)

which is not identical to photon 1 in mode B and photon 2 in mode A

|ψin〉 = |b〉1 |a〉2 . (3)

The beam splitter either transmits or reflects each single photon, with the reflection and trans-
mission coefficients from the previous exercise determining the probability of each outcome. For
the case of a loss-free 50/50 beam splitter the output for single photons emitted in modes A and
B, described by |a〉 and |b〉 respectively, is

|a〉 −−→
BS

1√
2

(|c〉+ i |d〉), (4)

|b〉 −−→
BS

1√
2

(i |c〉+ |d〉). (5)

The factors of i =
√
−1 originates from the phase shift induced on reflected photons which you

proved in the last exercise.

a) (2 points) For the following input states, calculate the output state and the probabilities of
specific detection events:

(a) A single photon in mode A: |ψin〉 = |a〉. What is the probability of detecting the photon
on counter C? And on counter D?

(b) Two photons in mode A: |ψin〉 = |a〉1 |a〉2. What is the probability of detecting both
photons on counter C? On counter D? What is the probability of detecting one photon on
each counter?

b) (2 points) Consider the following input states with one photon in each input mode:

(a) two distinguishable photons |ψin〉 = |a〉1 |b〉2,
(b) two indistinguishable bosonic photons |ψin〉 = 1√

2
(|a〉1 |b〉2 + |b〉1 |a〉2),

(c) a superpositon of two ‘fermionic photons’ |ψin〉 = 1√
2
(|a〉1 |b〉2 − |b〉1 |a〉2).

Calculate the output state for each input state and determine the probabilities of detecting both
photons on detector C, both on detector D, and one photon on each detector.

Exercise 3: Hong-Ou-Mandel experiment

The experiment you discussed in the previous exercise was first performed by Hong, Ou and Mandel
in 1987. As shown in the figure, they let two photons, one in each input mode, on the beamsplitter.
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Figure 1: Left: Schematic of the Hong-Ou-Mandel experiment. Right: Plot of the first observation
of the Hong-Ou-Mandel dip (C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044,
1987).

The experiment had an additional parameter, namely the distance between source A and the beam-
splitter. This allowed to change the relative arrival time of the two photons on the beamsplitter.
In their data original plot, shown in the figure, this corresponds to what is shown on the x-axis.
A beamsplitter position of slightly more than 300µm meant that the photons arrived exactly at
the same time, while a change of this position made the photon from source A arrive earlier or
later than the one from source B. With this setup, they could measure the probability to detect
a coincidence between the detectors as a function of the delay length (equivalent to delay time).
Coincidence means that one photon each is detected on each detector simultaneously.

As you can see in the figure the results of this photon coincidence experiment shows a strong dip
when the photons arrive within a certain time window. This is now known as the Hong-Ou-Mandel
dip.

a) (1 point) Consider the experimental result shown in the figure. What does the observed dip
in the coincidences tell about the quantum statistics of photons when you compare it to your
results from exercises 1 b) and 2 b)?

b) (1 point) The Hong-Ou-Mandel experiment is nowadays used as an important tool in quantum
optics, e.g. to determine the quality of single-photon emitters. In such experiments, only a
single source is used, with the first photon sent to input A being delayed, e.g. in a long optical
fiber, so that it coincides with the second photon (from the same source) sent to input B. Again,
this relative delay is varied as in the original experiment, and a dip is measured as function of
the delay time. What do you think decides the width (in time - or distance as in the plot shown
here) of the dip? Considering your results from the previous exercise what do you think can be
learned by the depth of the dip?

c) (1 point) How does the Hong-Ou-Mandel dip fit together with the statement that photons are
non-interacting particles?
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Ilia Solov’yov, SDU

3 Radical pair spin chemistry
Consider a “radical pair” which consist of two unpaired electronic spins, where one of the electrons
is coupled to a spin-1/2 nucleus through one hyperfine interaction tensor A. The radical pair is
subject to an external magnetic field ~B. The overall spin state of the two unpaired electronic spins
can be either singlet (S) or triplet (T).The Hamiltonian for the system is given by

Ĥ = µBg( ~B · ~S1) + µBg( ~B · ~S2) + µB(~S1 · Â · ~I) (1)

when the possible dipole-dipole and exchange interactions in the spin-system are neglected. ~I =
(Ix, Iy, Iz)i is the spin operator of the nucleus, ~S1,2 = (Sx, Sy, Sz) are the electron spin operator
and Â is the hyperfine interaction tensor.

(Q1:) (1 points) What are the possible values of the total spin?
(Q2:) (3 points) Define all possible basis wavefunctions ψi, i = 1, 2, ... , 8 that are eigenfunctions

of the total spin, to describe the quantum states of the radical pair.
(Q3:) (2 points) State the conditions at which a transition between a singlet and triplet state

of the radical pair is possible.
(Q4:) (1 points) Check numerically if this condition is satisfied for the anisotropic hyperfine

tensor, where the Azz = 16 G is the only non-zero component. The external magnetic field strength
to be 0.5 G.

(Q5:) (3 points) Now consider the radical pair “prepared” initially in the singlet state, estimate
the characteristic time needed for it to be converted into one of the triplet states.
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Michele Della Morte, SDU

4 Relativistic Orbit
It is well known that planets move in elliptical orbits around the sun and the derivation of the orbit
equation is a standard exercise in classical mechanics. However, if the effects of special relativity
are taken into account, the orbit is a rotating ellipse of the form

1

r
=

1

r0
{1 + ε cos[α(θ − θ0)]} ,

where α = 1 corresponds to the classical result.

� (1 point) Show that for small velocities the relativistic kinetic energy (perhaps up to a con-

stant) of a body of mass m can be approximated by −mc
2

γ .

� (1 point) Using the result from the previous point, write down the relativistic Lagrangian for
the sun-planet system.

� (5 point) Derive the above equation for the orbit and express α and r0 in terms of fundamental
constants of the trajectory (such as energy, angular momentum, etc.).

� (3 point) Given that the mean radius of the orbit of Mercury is 58 × 106 km and that its
orbital period is 88 days, calculate the shift in the angular coordinate of the perihelion (orbit
point nearest to the sun) over a century.
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Carsten Svaneborg, SDU

5 Polymers and Rubber
In the following exercise, we will introduce the statistical physics of polymer molecules and use it
to make predictions for the force-extension relation for a rubber band. A polymer molecule is a
linear chain of monomers. Rubber is a material where a large number of polymers are chemically
cross-linked into one large molecule.

Exercise 1 Pulling a single polymer molecule

We can model a polymer molecule as a random walk consisting of N steps each of length b. Lets
say one end of the polymer starts at the origin of our coordinate system, then the probability for
finding the other end of the polymer at R = (x, y, z) is given by the Gaussian distribution

P (x, y, z;N) =

(
3

2πNb2

) 3
2

exp

(
−3(x2 + y2 + z2)

2Nb2

)
1. (1 point) Derive expressions for the 1D and 3D mean-square extension, i.e. the moments 〈x2〉

and 〈R2〉 = 〈x2 + y2 + z2〉

2. (1 point)Calculate the average spatial size (the root-mean-square end-to-end distance) and
compare it to the contour length of the polymer L = bN . The latter is the maximal length
we can pull the polymer. For polyisoprene (synthetic rubber) typical numbers are N = 20000
and b = 8Å.

Imagine we perform an AFM experiment, where we have fixed one end of our polymer on a substrate
and the other end of the polymer on the AFM cantilever, such that we control the end-to-end vector
R. Simutaneously, we can measure the force F (R) the polymer generates on the cantilever. In
a statistically physical sense the macrostate is defined by R, while the number of corresponding
microstates is Ω(R) ∝ P (x, y, z). Because the probability (up to a normalization) is the number of
states, that exactly has the specified end-to-end distance.

3. (1 point)Derive an expression for the (Helmholtz) free energy A(R). Neglect the internal
energy U , as well as all terms independent of R. Finally, show the polymer force is entropic
and is given by

F (R) = −3kT

Nb2
R

Exercise 2 Deformation free energy density

We assume the cross-linking process takes place in the undeformed state. To model it, we assume
all the strands in the network are formed with end-to-end distances R = (x, y, z) sampled from the
Gaussian distribution P (x, y, z;Ns), where for simplicity we assume all strands in the network has
the number of steps Ns.

When we subsequently deform the material, we assume each strand experience a homogeneous
affine deformation such that the end-to-end vector (x, y, z) is transformed to (λxx, λyy, λzz). But
the internal monomers in the polymer remains free to move. Furthermore, since rubber is incom-
pressible all deformations occur at constant volume. Assuming we arbitrarily pull in the x direction,
then the elogation ratios are simply given by λx = λ, and λy = λz = λ−

1
2

9
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1. (1 point) Calculate the mean-square end-to-end distance of a deformed strand 〈λ2xx2 +λ2yy
2 +

λ2zz
2〉 using the results of the previous exercise. (Hint: averages in the deformed state are

taken with respect to the probability P (x, y, z;Ns), because we cross-linked the network in
the undeformed state)

2. (1 point) Use the results of exercise 1 to calculate the average free energy 〈A(λ)〉 of a single
deformed strand, and show that the Helmholtz free energy density change ∆a(λ) relative to
the undeformed state is given by

∆a(λ) ≡ ρs (〈A(λ)〉 − 〈A(1)〉) =
ρskBT

2

(
λ2 + 2λ−1 − 3

)
,

where ρs is the number density of network strands, and the shear modulus of the material is
defined as G = ρskBT .

3. (1 point) Calculate the strand number density ρs and the shear modulus. For poly-isoprene:
bulk density ρ = 0.830g/cm3, the mass of a single step M0 = 113g/mol, and each strand
consists of Ns = 44 steps. We assume the material is at room temperature.

Exercise 3 Force-extension for a rubber band

The force F (λ) we required to pull the rubber band to maintain a length Lx(λ) or equivalently
extension λ is

F (λ) =
d (V∆a(λ))

dLx(λ)

where V denotes the volume of the rubber band, and the length is Lx(λ) = Lx1λ. Lx1 is the
undeformed length. Our external force is equal and opposite to the force generated by the material,
hence the sign in this expression.

1. (1 point) Make a sketch of the force-extension (Lx(λ),F (λ)) relation for a rubber band of
undeformed dimensions Lx1, Ly1, Lz1 = 10cm, 0.3cm, 0.3cm. Use the value for the shear
modulus in the preceeding exercise, or failing that use the estimate G = 0.5MPa.

2. (1 point) Derive approximate expressions for force-extension relationship valid in the small
and large deformation limits, respectively. (NB. The strain ε is defined as λ = 1 + ε and we
assume ε� 1 in the small deformation limit)

3. (1 point) Assume we suspend a mass m = 1kg from the end of the rubber band. What is the
corresponding equilibrium length Lx? (NB. assume we are in the large deformation limit.)
Now imagine that you instantaneously heat the rubber band to T = 500K by running the
flame of a lighter along it. What is the corresponding equilibrium length?

4. (1 point) If we pull a rubber band too much it snaps. The end-to-end distance of a polymer
(strand) can not exceed the contour length of the polymer (strands), since we would have
pulled it to a straight line. Use the results of the preceeding exercises to estimate the breaking
point λc where the (root mean square) end-to-end distance match 50% of the contour length
of a strand. (NB. assume we are in the large deformation limit).

The shear modulus is proportional to temperature because rubber elasticity is an entropic effect,
which makes rubber materials very different from most other materials. This was observed by
James Gough in 1802 and was later studied by Joule. The effect is now known as the Joule-Gough
effect.

0
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John Hjort Ipsen, SDU

6 Topological phase transition in the
2D YX-model

In 2016 the Noble Prize in Physics was awarded to three British physicists John Kosterlitz, David
Thouless and Duncan Halfdane for their work on topological phases of matter and topological phase
transitions, which have had major impact on many areas of physics. In this exercise we will go
through some simple considerations in a statistical mechanical setting to illuminate some charac-
teristics of topological defect structure. Topological defects in physical systems emerges as point or
string-like structures in the low-temperature ”ordered” state of systems which possess continuous
symmetry, e.g. ferro-magnets, nematic liquid crystals, quantum liquids and superconductors. The
relevant topological defects depend on the symmetry and the dimension of space, but the simplest
examples are found in 2D ferromagnets. The standard O(2) symmetric model of ferro-magnetism
on a regular 2D lattice (XY-model) takes the form

H = −J
2

∑
〈ij〉

~Si~Sj (2)

where each lattice site i = 1, .., N is equipped with the variable ~Si = (cos(θi), sin(θi)) ∈ S1.
θi is the angle between ~Si and the x-axis. J > 0 is the nearest neighbor coupling strength.

Problem 1: 2 points Show that at low temperatures Eq.(2) can be approximated by a continuum
model

H ' Kz

2
N +

K

2

∫
A
d2x∂µθ(~x)∂µθ(~x) (3)

where ~x = (x1, x2) and ∂µθ = ∂θ
∂xµ

, µ = 1, 2. A is the area, z is the lattice coordination number

and K = J
2 c, where c is a geometrical factor of order unity depending on the lattice employed.

Furthermore, Eq.(3) has a short distance cut-off a which is the lattice spacing.

Problem 2: 2 points Verify that the energetically most favorable configurations of the angle field
θ(~x) at low temperatures obey:

∂µ∂µθ(x) = ~∇2θ(x) = 0 (4)

As θ(~x) obey the 2D Laplace equation, - it is a harmonic field. θ = constant is clearly a solution
of Eq.(4), consistent with our expectation at T = 0. Since ~S is periodic we must in general expect
that the accumulated angle θ along a closed curve C obey∮

C
dθ =

∮
C
∂µθ(~x)dxµ = 2πq, q ∈ Z (5)

If q = 0, θ(~x) is regular (analytic) inside the curve C. If q 6= 0 there is at least one (non-analytic)
singular point of θ(~x) inside C. q is called the topological index or strength, which is clearly an
additive property. Let us assume that q is invariant for all paths encircling Origo (0, 0). Con-
sider a tiny circular curve of radius r around Origo, which in polar coordinates can expressed as
~x(r, φ) = r~er where ~er = (cos(φ), sin(φ)). In these coordinates we have ~∇θ = 1

r
∂θ
∂φ~eφ + ∂θ

∂r~er where

11
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~eφ = (− sin(φ), cos(φ)) and ~∇2θ(x) = ∂2θ
dr2

+ 1
r
∂θ
dr + 1

r2
∂2θ
dφ2

.

Problem 3: 1 point Show that

θ(x1, x2) = θ0 + qφ(x1, x2) = θ0 + q tan−1(x2/x1) (6)

is a solution of Eq.(4) in R2/0 which satisfy Eq.(5).

The resulting textures of ~S is shown in Figure 2 for θ0 = 0 and q = −1, 1, 2.

Problem 4: 1 point In Figure 3 is shown the texture associated with two point defects. What is
the strength of the two defects?

The energy associated with these particle-like defect textures:

H =
K

2

∫ R

a

∫ 2π

0
rdrdφ(~∇θ)2 = πq2K ln(R/a) (7)

where R represents the system size, i.e. πR2 = A.

Problem 5: 1 point Evaluate the self-energy of a defect of strength q. (i.e. show that eq. 7 holds)
and explain why so |q| = 1 defects are dominating the system

The above considerations for a single point-defect can easily be generalized to a multi-defect system,
where the defect solutions can be added and so can their strengths. An example is shown in Figure 4

Nothing is confining the defects to a particular place on the lattice, so they are free to move.

Problem 6: 1 point Calculate the translational entropy of a single defect.

Now, consider a pair of defects of strength +1 and −1. The total topological strength of the system
is thus zero and the two defects can annihilate. Similarly, such a pair can be created spontaneously
with an energy cost Eq(7) for each defect.

Problem 7: 2 points Obtain an expression for the free energy of such a pair of defects, and find
the temperature above which defect pairs spawn spontaneously.

Kosterlitz and Thouless (1973) argued that above this temperature the spontaneous creation and
proliferation of defects will lead to a complete disordering of the system and an infinite order phase
transition

Not a problem: 0 points What does it mean for a transition to be infinite order?
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Figure 2: Examples of textures for defects with strength: q = −1, 1, 2 respectively

Figure 3: Textures for 2 more defects.

Figure 4: (cos(φ(x1, x2)), sin(φ(x1, x2))) field for φ(x1, x2) = π
2 + tan−1((x2 + 12)/(x1 + 10)) −

3 tan−1((x2 + 5)/(x1 − 13)) + 2 tan−1((x2 − 1)/(x1 − 10))

13
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7 Higgs Mechanism
A long range force like the electromagnetic force is mediated by massless gauge bosons. A force
like the weak force is short range and its strength decreases exponentially with the distance. The
mediating gauge bosons are massive. While the electromagnetic force is connected to the Coulomb
potential, the weak force can be derived from the Yukawa potential

V Yuk(r) =
e−

cM
~ r

4πr
(8)

where M is the mass of the mediating gauge boson. The Yukawa potential is the solution of the
Klein-Gordon equation for a scalar potential with a pointlike source at the origin.

The Higgs mechanism allows to introduce masses for gauge bosons without destroying the
underlying gauge symmetry.

The mechanism can be illustrated by looking at the example of a superconductor. An electro-
magnetic field entering a superconductor is exponentially suppressed. This effect is the so-called
Meißner–Ochsenfeld effect.

The relation between a magnetic field ~B and the superconducting current density ~js is given by
the London equations:

∇×~js = −(2e)2 nc
mcc2

~B (9)

where nc = 1
2ne is the number density of the Cooper pairs, ne the number density of the electrons

associated to the superconductivity. The mass of a Cooper pair is denoted by mc = 2me and me is
the mass of the electron.

a) (2 points) Assume a static case with

∂ ~E

∂t
= 0 (10)

and use the Maxwell’s equations (in SI units) to derive

∇2 ~B = +
µ0e

2ne
mec2︸ ︷︷ ︸
= 1
λ2

~B (11)

where λ is the penetration depth.

b) (2 points) Assume a magnetic field in z-direction with its absolute value depending on x, ~B =
B(x)~ez, and find a solution to the differential equation resulting from Eq. (11) with the boundary
condition that ~B is vanishing for x→∞.

c) (1 point) Compare the given Yukawa potential and the found solution for the ~B field and guess
a relation between the penetration length λ and the mass M .

d) (3 points) Show that the vector potential ~A with ~B = ∇ × ~A in Coulomb gauge (∇ · ~A = 0)
fulfills

−∇2 ~A = µ0~js. (12)
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Now, using the knowledge from before show that the time-independent Proca equation for a
massive vector field, [

−∇2 + µ0

( c
~
M
)2]

~A = 0, (13)

is fulfilled assuming an appropriate gauge (specify what you choose).

Remark: This procedure can also be done for the time-dependent case where the vector potential
fulfils the inhomogeneous wave equation[

1

c2
∂2

∂t2
−∇2

]
~A = ~js, (14)

which corresponds to taking the surface current into account, and using the same reasoning as
for the time-independent case, one can derive the Proca equation[

1

c2
∂2

∂t2
−∇2 + µ0

( c
~
M
)2]

~A = 0, (15)

which corresponds to the photons having mass.

e) (2 points) In the case of the Higgs mechanism, it is assumed that there is a vacuum field that
suppresses the in principal long range force of the weak force exponentially, analogously to what
happens in the superconductor with the in principle longe range force of the electromagnetic
force. The W and Z boson have “effective” masses.

In natural units (~ = c = µ0 = 1), we can write the current ~j in the massive gauge boson case
with the gauge field ~A as

~j = −g2v2 ~A (16)

where g is the coupling strength and v is the minimum (vacuum) of the potential

V = µ2φ2 + λφ4, λ > 0 (17)

where µ and λ are real parameters of the Higgs potential and φ is the Higgs field. Which
condition needs µ2 to fulfil so that a non-vanishing v exists? What is the measured mass of the
gauge boson? (You may use relations that have been useful before for relating the two pictures,
the one of the mass and the one of the surface current.)
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8 Black Hole Picture
In this problem, we will explore the recently unveiled image of the black hole M87*, recorded by
the Event Horizon Telescope collaboration.

1. (2 points) Use Newtonian mechanics, together with the information that the speed of light is
a universal “speed limit”, to derive the radius of a black hole. Do not use Special or General
Relativity here.
Compare to the correct result from General Relativity, which says that in radial coordinates
(so-called Schwarzschild coordinates), the radius of a black hole of mass M is rS = 2GM

c2
,

where G ≈ 7 ·10−11Nm2/kg2 is the Newton constant, and c ≈ 3 ·108m/s is the speed of light.
Can you provide an argument why your result, even though it only uses Newtonian physics,
gives roughly the correct answer? (hint: it might be useful to think about units to find an
answer.)

2. (3 points) The black-hole has a “shadow” (dark region in the center of the image) because it
“traps” light inside its event horizon, which is the Schwarzschild radius in the case of non-
rotating black holes.
Explain the existence of a light ring (the bright region around the shadow), based on the
effect that massive compact objects act as “gravitational lenses”, i.e., they bend light. In
your explanation, take into account that the horizon (located at r = rs for a non-spinning
black hole) is a null hypersurface, i.e., it is a surface in which light rays stay at constant r.

3. (3 points) To estimate the size of the telescope that is needed to resolve the shadow and light
ring of M87*, first estimate the size of the shadow of M87*. Use 1) and the information that
M 87* has a mass of about 6 · 109M� (M� ≈ 2 · 1030kg) is a solar mass. Second, to estimate
the required telescope size, use the distance to M87*, which is d ≈ 5 · 1022m. Finally, take
into account the information that the EHT observes at a wavelength of λ ≈ 1mm, and that
for a telescope of dish size L the resolution it can achieve is given by λ/L. Discuss your result
in view of the fact that the EHT actually uses a collection of telescopes, located at the South
Pole, in South America, North America and Europe.

4. (2 points) Observing the shadow of a black hole provides an unprecedented way of testing
Einstein’s theory of General Relativity (GR), because observing the shadow and comparing
to predictions from GR tests gravity in the so-called “strong-field regime”. Think about a

Figure 5: Image of M87*, Event Horizon Telescope Collaboration (The Astrophysical Journal
Letters,875:L1(17pp), 2019 April 10).
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way of quantifying this and compare to how “strong” gravity is in the solar system, where
many observational tests of General Relativity already exist. (For a rough comparison, it
might be useful to use the radius of the sun, r� ≈ 7 · 108m.)
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9 Solid State Physics
The Fermi surface of a material is given by

ε(k) = }2
(
k2x + k2y
m∗

+
k2z

2m∗

)

where m∗and 2m∗ are effective masses and k = (k x, ky, kz) is the wavevector of the
electron.

We consider an electron on the Fermi surface in the point k0 =
(
k0x, k

0
y, k

0
z

)
a) (1 point) Determine the velocity vector for the electron v = 1

~∇kε(k) (∇k being the gradient
with respect to v)

An electric field E = (E, 0, 0) is applied.

b) (2 points) Determine the direction and magnitude for the acceleration of the electron

Now the direction of the electric field is changed to E =
(
E√
2
, 0, E√

2

)
c) (2 points) Determine the new direction and magnitude for the acceleration of the electron

Now the electric field E = 0 and is replaced by a magnetic field B = (B, 0, 0)

d) (3 points) Show that
dkx
dt

= 0 ;
dky
dt

= −ω1dkz;
dkz
dt

= ω2dky

and determine ω1and ω2

e) (2 points) Show from the result in d) that the electron oscillates in a plane perpendicular to
B and determine the frequency of the oscillation.
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10 Freezing Front
In this problem we consider the freezing of water in a lake. When the temperature drops sufficiently
the water begins to freeze and we wish to investigate the ice thickness with time.
The thickness of the ice is controlled by the rate at which the heat flow through the ice removes
the latent heat released during freezing. As a first model, assume that the lake is infinite in extent
and occupies the region 0 ≤ x <∞ with the surface at x = 0. Also the water in the lake is at the
freezing temperature, Tm, and the temperature distribution in the ice is linear. The temperature
at the surface is constant, T0. At time t the freezing front is at a distance, X (t).

(a) 2 points Obtain an expression for the rate of latent heat release of the liquid-solid transition.

(b) 2 points Use the law of heat conduction to obtain an expression for the rate of flow of heat
through the ice.

(c) 3 points Hence show that the position of the freezing front is given by

X (t) =
√

2Kt (18)

and find a formula for the constant K.

An analytic solution exists for this model

X(t) = 2λ
√
αt

where α = k
ρc and λ is the solution of the transcendental equation

λeλ
2
erf (λ) =

c (Tm − T0)
L
√
π

with erf (x) =
2√
π

∫ x

0
e−u

2
du

(d) 2 points Use a first order approximation to find an expression for λ2 and show that this also
leads to the approximation (18).

(e) 1 points This problem is set in terms of the freezing of water, how appropriate would it be as
a first model for the solidification of molten steel?

Parameters
k Thermal conductivity, Wm−1K−1

L Specific latent heat of fusion, Jkg−1

ρ Density, kgm−3

c Specific heat capacity, Jkg−1K−1

Values (in SI units ice steel

Tm 273 1650
ρ 900 7900
L 3.3 · 105 2.7 · 105

c 2100 450
k 2.2 40
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