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1 Harmonic Oscillator prof. dr. sc. Hrvoje Buljan *

Consider a quantum particle of mass m and charge ¢ trapped in a two-dimensional (2D)
harmonic oscillator potential:

V(z,y) = %mw2 (z® + 7).

An infinite solenoid is piercing the xy plane at z = y = 0. The solenoid is infinitelly thin;
its magnetic field is B = ®d(x)d(y)z.

1. Write down the Schrédinger equation for the particle if the vector potential (in polar
coordinates (r, ¢)) is chosen to be A(r) = %g{)
Consider a gauge transformation generated by the function A(r): A’(r) = A + VA.
What is the relation between the wavefunctions ¥ and ¢/, which are solutions of the

Schrodinger equation in the gauge A and A’, respectively? (3 points)

2. Consider a singular gauge transformation given by A = —%qﬁ. Write the Schrodinger
equation for the particle in this gauge. Find the boundary condition for the particle’s
wavefunction when ¢ — ¢ + 27. Show that 2 f(|z|), where z = = + iy, satisfies this
boundary condition for an appropriate value of . By using this fact, construct an
eigenstate for this system in this gauge. Can you argue that this eigenstate is the

ground state when the flux @ is sufficiently small. (4 points)
3. Write the wavefunction from the previous item in the gauge A(r) = %é, and
calculate the expectation value of the canonical and the physical angular momentum
(L. (1 points)

4. If the solenoid current would be suddenly turned off to zero at ¢ = 0, what would
be the appropriate wavefunction to describe the system at ¢ = 07. Calculate the
expectation value of the canonical and the physical angular momentum (<ﬁz>) at
t = 0% and explain the result. What would be the final state of the system if the
flux is adiabatically turned off to zero? (2 points)

*University of Zagreb, Faculty of science, Department of Physics
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2 Trans-polyacetylene prof. dr. sc. Ivo Batistié *

Trans-polyacetylene is a polymer, a large molecule built of repeated units made of carbon
and hydrogen units (CH), as it is shown in Figure (1):

Figure 1: Basic structure of trans-polyacetylene.

In the ground state, the polyacetylene is a dimerized chain with alternating short and
long bonds between carbon atoms. The dimerization is a result of the Peierls instability'.
Each carbon atom has p,¥ atomic orbital that is occupied by a single electron. There is
an overlap between p, orbitals from the neighboring carbon atoms, which enables electrons
to jump from one atom to another, and to propagate along the chain. The electron states
to be addressed in this problem are composed of these p, orbitals. All other orbitals are
fully occupied or empty and they can be neglected.

The atomic orbitals are not stationary states. The atomic orbitals make sense only for
isolated atoms. For molecules, crystals or polymers the wave function of an electron can
be approximated as a linear combination of atomic orbitals. Each atomic orbital enters
the linear combination with a coefficient/an amplitude 1, (n is the atomic index). In
the tight-binding approximation (TBA), unknown amplitudes v, satisfy the following
equations (for one-dimensional chain):

€ Vn = ~tpn-1Vn-1—tnnst Yns1 n=0,%1,...(n is index of the atom)

TBA equations represent the eigenvalue problem for the electron energies e. |1,|? is the
probability of finding the electron at n-th atom. t, ,+1 is an amplitude for electron hopping
from n-th atom to (n + 1)-atom. Since the overlap between atomic orbitals depends on
the distance between atoms, the hopping amplidutes, ¢, ,+1, are also distance dependent.

1. Apply tight-binding approximation to polyacetylene for the electrons in p, orbitals,

and write down the corresponding TBA equations. (1 point)
Apply the Bloch theorem to the wave functions amplitudes, and write down the
eigenvalue problem for the periodic part of the Bloch wave function. (1 point)
Find out how the electron energy, e, depends on the wave number. (1 point)

What is the energy gap between occupied and unoccupied states if hopping ampli-
tudes for short and long bonds are 2.875 eV and 2.125 eV respectively. (1 point)

Hint: Polyacetylene is a dimerized chain with periodicity of two (CH)-units. The
wave number should be defined with respect to the unit cell with two carbon atoms.
Assume that there are two dinstinct hopping amplitudes for short and long bond,
for example, t1 and to.

*University of Zagreb, Faculty of science, Department of Physics

fPeierls’ theorem states that a one-dimensional equally spaced chain is unstable with respect to the
periodic lattice deformation that opens a gap at the Fermi level.

ip, orbital extends in the direction perpendicular to the plane defined by the zig-zag bonds connecting
carbon atoms and bonds connecting carbon and hydrogen atoms.
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2. What is the average electron energy of undimerized polyacetylene. (1 point)
Assume that hopping amplitude for undimerized chain is 2.5 eV.
What is the average electron energy of dimerized polyacetylene. (1 point)

Hint: Elliptic integral of the second kind

/2
E(k) = f dr /1 — k?sin?x
0

The asymptotic expansion for k close but less than 1 (k' = +/1 — k2):

k"? 4 1
Ek)~14 —(In— — =
(k) +5 <nk/ 2)

3. The polyacetylene is a topological insulator*. A topologically different state is ob-
tained when the long bond becomes short, and the short bond becomes long. The
both topological states are shown in Figure (2):

Figure 2: Topologically different states of polyacetylene. For the sake of simplicity hydro-
gen atoms are omitted.

The Hamiltonian for the periodic part of the Bloch wave function can be written as:

H(q) = o hz(q) + 0y hy(q)

Write down functions h;(q) and hy(q). (1 point)

What is the winding number T around the origin, (0,0), of the curve (h.(q),hy(q)) for
each topological state, when ¢ is running over all wave vectors in the first Brillouin
zone, from negative to positive values. (1 point)

_ (0 1 (0 —
=\10/ " o
4. Consider polyacetylene chain with a defect separating two topological states, as it is
shown in Figure (3):

Hint: Pauli matrices:

*Two insulators are in the same topological class if they can be mapped to each other by a continuous
change of Hamiltonian parameters keeping the energy gap finite.

fThe winding numer of a closed curve around a given point is an integer representing the total
number of times that curve travels counterclockwise around the point.
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Figure 3: Two types of topological defects (labeled with circles) in polyacetylene separating
the different topological states.

Demonstrate the existence of the electron state with the energy e = 0 (within the
gap; also called edge state), localized around the defect for both defect types.
(2 points)
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3 The Unruh effect Grgur Simunié, mag. phys. *

Consider a (1 + 1) dimensional flat spacetime with coordinates (¢,x) and metric (we will
use the term metric for the metric tensor, not the actual metric):

gab = —(dt)a(dt)p + (dz)a(dz)s . (1)

Here (and in what follows) we use the abstract index notation to denote the tensor types
and (dt), and (dz), are coordinate basis one-forms on cotangent bundle over spacetime
manifold and the product of 1-forms is understood to be a tensor product.! We are also
using natural unit system (¢ = G = h = kg = ¢p = 1). Next, consider an observer moving
with constant proper acceleration a® in this spacetime and let (7,£) be the coordinates
meassured by this observer. Furthermore, let a = 4/|a‘ac|.

The purpose of this problem is to determine how this accelerated observer sees certain
physical effects. To be more specific, if an inertial observer sees some physical system
in a ground state, we will determine in what state will the accelerated observer see the
same system. The physical system of interest here will be the system made of elementary
particles which we describe by certain fields. Here we will only consider the simplest case
of massless scalar particles.

1. Find the transition functions between the laboratory frame and the frame of the
accelerated observer. Express the metric in the (7,£) coordinates. Assume the
following initial conditions for the accelerated observer:

(7 =0) = (0, a) , (2)
= (1,0). (3)

(1 point)

2. Find the function £(€) such that the metric g is proportional to (—(d7)q(d7)p +
(d§)a(dE)p) and determine the proportionality factor (assume {(§ = 0) = 0). What
are the transition functions between (¢, x) and (7,&) frames? (1 point)

3. Consider a massless, real scalar field ¢ described by the action:

Slo1 = =5 | Eav=ggaswin(). (W

where g denotes the determinant of the metric. Show that ¢ can be expressed in
following forms:

1 (* dk o o
Qf)(t,l‘) = ﬁ JOO m (alzezkmlek\t + a;efzkm+z|k\t) ’ (5)
A 1 (™ dk - .
=-— Y pretREARIT o —ikEHilR|T

where a;,a;,b;,b; € C. Are a; and a,j independent? If so, explain why, and if
not, determine the relation between them. (2 points)

*University of Zagreb, Faculty of Science, Department of Physics

TNot infrequent, this equation is written in the form ds® = —dt?> + da®. However, this should not
be written like this. Even though the square of the forms d¢ and dz is well defined as (dt)q(dt)® and
(dz)a(dx)®, respectively, the square of ds is problematic because the form with such square does not
necessarily exists. And even though there is a way around that problem locally, one should avoid such
notation.
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4. Let us preform a quantization of this field by making ¢, a,;—'r, b,’f operators. Assume
canonical commutation relations:

[¢(t, ), 6(t,y)] = [b(t,z), d(t,y)] = 0, (7)
[6(t, @), ¢(t,y)] = id(z —y), (8)
where dot denotes derivation with respect to t. How do commutation relations look

like in (7, &) coordinates? What are commutation relations for a;—r and b;f? Which of
these can be identified as creation operators, and which as annihilation operators?

(1 point)
5. Express the field ¢ as a function of lightcone coordinates:
u=t—zxz,v=t+zx, 9)
i=7—-&, 0=+ (10)
(1 point)

6. Show that the operator b, can be expressed as:

b, = JOOO dw\/f (ag F(w,Q) + af F(—w,Q)) , (11)

where F' is some complex function of two variables. Determine the function F.
(1 point)

7. Define the vacua states for laboratory and accelerating observers. If the field is in
the vacuum state of the laboratory observer, determine what is the particle density
ngq of particles with momentum €2 that the accelerated observer measures. How can
we interpret these results?

Hint: In order to compute nq, first show that F(w, Q) and F'(—w, 2) are proportional
and determine the proportionality factor. (3 points)
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4 Redshifted 21-cm signal from the Epoch of Reionization
dr. sc. Vibor Jeli¢ *

A number of radio telescopes (e.g. LOFAR in the Netherlands; MWA in Australia; and
HERA in South Africa) are aiming to detect the redshifted 21-cm hyperfine line of neutral
hydrogen from the Epoch of Reionization (EoR), a pivotal period in the history of the
Universe during which all-pervasive cosmic gas was ionized by radiation of the first “stars”.

1. Calculate the range of frequencies to which a radio telescope needs to be sensitive to
detect the cosmological 21-cm signal. Current observational constrains suggest that
the EoR occurred roughly within the redshifts of 6 and 15. (2 points)

2. Write down the equation of radiative transfer along a line of sight through a hy-
drogen cloud of optical depth T, defined as the integral of the absorption coefficient
(o) along the path through the cloud. The brightness (or specific intensity) I, of
emission emerging from the cloud at frequency v should be quantified by the equiv-
alent brightness temperature Ty(v) such that I, = B,(Tp), where B, is the Planck
function. For the background emission consider only the cosmic microwave back-
ground (CMB), emission of the universe as a black body. Assume the absence of
any scattering along the path. For an illustration see Figure 1. (2 points)

3. Solve the equation of radiative transfer, yielding the brightness temperature of the
emergent radiation at frequency v. Assume uniform excitation temperature Tey
through a cloud. The excitation temperature of the 21 cm line is known as the spin
temperature Ts. The spin temperature is defined through the ratio between the
number densities n; of hydrogen atoms in the two hyperfine levels (1S singlet, nyg,
and 1S triplet levels, n;). Write down the equation for the spin temperature, if the
ratio of the statistical degeneracy factors of the two levels is ¢1/go = 3. (3 points)

4. What happens if the intervening cloud and the cosmic microwave background radi-
ation are in thermodynamic equilibrium? Discuss if the measurement in such a case
reveals anything interesting about the intervening cloud? If not, propose conditions

in which the measurement will be successful. Explain why. (3 points)
e, FE— b, FE—
- -
— HI —
— —
D pm— -

To Ts Tcme

Figure 4: An illustration of various components relevant for the radiative transfer problem:
the background radiation (CMB) going through a hydrogen cloud of optical depth 7, and
emerging with the brightness temperature 7. The excitation temperature of the 21 cm
line associated with the hydrogen cloud is known as the spin temperature 7.

*Institute Ruder Boskovié
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5 Motion of point charge in the presence of the magnetic
monopole dr. sc. Bruno Klajn *

During the undergraduate course in physics, the student is familiarized with physical sys-
tems of fundamental importance, such as the Kepler problem and the harmonic oscillator,
both of which are exactly solvable. There is, however, an additional system on the same
level of importance which is rarely mentioned in undergraduate textbooks. It is the motion
of point charge ¢ in the presence of a fixed magnetic monopole g. In this problem, you
will investigate some elementary properties of this system.

Let the magnetic monopole g be fixed at the origin of coordinates so that it produces

the magnetotstatic field
B— Ho g 7

Ar 3
with 7 being the position vector of arbitrary point in space. A point particle of electric
charge ¢ and m is free to move in the presence of this field. Assume that all motion is
nonrelativistic.

1. Demonstrate that the Lorentz force acting on the particle is perpendicular to its
velocity, F 1 ¥, and then, using this fact, show that the kinetic energy T of the
particle is a constant of motion. Furthermore, show that this implies that the particle
always moves at constant speed, equal to its initial speed |0] = v. (1 point)

2. Similarly, show that the Lorentz force is perpendicular to the instantaneous position
of the particle, FL1vF Using this, and writing the position vector of the particle in
terms of its magnitude and direction, ¥ = r7, derive the differential equation for r(¢).
Solve this equation with the initial conditions at ¢ = 0, r(0) = rmin and 7(0) = 0.
From the solution r(t), determine the physical meaning of rpp. (2 points)

3. Show that while the torque 7 acting on the particle is nonvanishing, it can never-
theless be written as a derivative of a certain vector, 7 = —dl_;em/dt which implies
that the conserved quantity for thls motion is not the particle angular momentum L
itself, but rather the combination J =L+ Lem. Explicitly calculate the vector Lem.
Verify that the vector Lem, is, in fact, the angular momentum of the electromagnetic
field defined by the integral

€ JRS 7 x [E(ﬂ) x E(f*)] av’,

where E is, in the nonrelativistic approximation, just the electrostatic field of charge

g. Conclude that the vector J represents the total angular momentum of the system

and calculate its magnitude J in terms of known quantities and initial conditions.
(3 points)

4. Now introduce the coordinate axes with the z-axis pointing along the vector J and
use the standard spherical coordinates in what follows. Calculate the quantity 7 - J
and use it to find the time dependence of the zenith angle 0(¢). Is the motion of the
particle constrained to some surface? If so, identify the surface in question.

(2 points)

5. Finally, from the expression 7 x J determine the equation of motion for #. Rewrite
the obtained equation in the coordinate system introduced above and obtain the

*University of Zagreb, Faculty of Science, Department of Physics
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differential equation for the azimuthal angle ¢(t). Solve the differential equation
with the initial condition ¢(0) = 0. (2 points)

After following these steps, you have found all constants of motion and calculated the

trajectory of the particle. Therefore, you have completely solved the problem of charged
particle motion in the presence of magnetic monopoles.

10
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6 Cosmic Magellan prof. dr. sc. Kresimir Kumericki *

Imagine that propagation of light through our homogenous and isotropic universe is de-
scribed by the differential relativistic interval:

ds® = 2dt* — a(t)? {dﬂ + R?sin® <£> (d6? + sin® 9d¢2)] =0
0

where r is the radial coordinate (defined as comoving, which means that r of a given object
doesn’t change over time), and a(t) is the scale factor, which encodes expansion of the
universe with time ¢ as

with ¢ being the speed of light and Ry constant length parameter. We assume that the
universe is closed and finite, with maximal value of r equal to Rym.

1. In this case we would in principle be able to see the whole picture of our galaxy
somewhere on the night sky, thanks to its light travelling all the way around the

A
universe. What would be the relative shift (redshift) z = T)\ of wavelengths of this

light?
Hint: 1+ z = a(to)/a(te), where t. and tp denote times of emission and observation
of light signals. (5 points)

2. Other galaxies we would be able to see at least twice: once via light taking the
shorthest path, with redshift z;, and again, via light taking one turn around the
universe, with redshift zo. Show that these two redshifts are related to the one from
the (a) part as (1 + 21)(1 + 2z2) = (1 + 2). (5 points)

*University of Zagreb, Faculty of Science, Department of Physics
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7 Solar neturinos prof. dr. sc. Matko Milin *

In cores of the Sun and similar stars, energy is mainly released through the so-called
“ppl-cycle”; i.e. the following series of nuclear reactions:

ptp—od+et +v
p+d—3He +~v |,
3He + 3He — *He + 2p

35— p—p Neutrino
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Figure 5: Neutrinos produced in the ppl-cycle have the energy spectrum given in figure
(taken from Bahcall and Ulrich, Rev. Mod. Phys. 60, 297, 1988.) - the integral of A(¢q)dg
is here normalized to unity for dg measured in MeV.

The theory of beta-processes describes the curve in the figure approximately by the
formula:

A =193.985MeV ™ - ¢%(Q + mec® — )/ (Q + mec® — q)2 — (mec?)?

)

where @ is the Q-value of the first step in the cycle (Q~ 420 keV), and m.c?*~ 511 keV is
the energy corresponding to the mass of the electron.

1. Find the average energy of the neutrinos produced in the cycle! (4 points)
If you can’t calculate it, estimate it from the figure (as you’'ll need it later).

2. Find the (average) energy that is added to the solar core material (plasma) for every
produced *He nucleus. The masses of the particles involved in the ppl-cycle are:
m(p)= 1.6726-10"2"kg, m(d)= 3.3445-10"2"kg, m(3He)= 5.0082-10~27kg, m(*He)=
6.6465-10~27kg, m(e*)= 9.1094- 10~ 3'kg. (2 points)

3. The so-called “solar constant” is the mean flux of solar electromagnetic radiation per
unit area, measured on a surface perpendicular to the rays, one astronomical unit
from the Sun (roughly the distance from the Sun to the Earth, d= 150-10%m). It is
easily measured to be ~ 1360 W/m?. How much mass is converted into energy every
second in the Sun, assuming that all the solar energy is coming from the ppl-cycle?

(0.5 points)
How many ppl-cycles happen every second? (0.5 points)

*University of Zagreb, Faculty of Science, Department of Physics
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4. Assuming that the Sun will convert 10% of its initial hydrogen into helium during
its evolution, estimate the lifetime of the Sun. The solar mass is 2-103°kg and the

initial mass of the hydrogen was ~75% of that number. (1 point)
5. How many neutrinos does the Sun emit every second? (0.5 points)
What is the solar neutrino density flux (i.e. the number of neutrinos per second and
per unit area perpendicular to their velocity) at Earth? (0.5 points)

The obtained number corresponds to the upper limit of the flux of solar electron
neutrinos (their number gets smaller due to the neutrino oscillations).

6. What is the energy flux (energy per unit area per unit time) associated with the
solar neutrino density flux at Earth? (0.5 points)
What share of total emitted energy comes from the Sun through neutrinos?

(0.5 points)

13
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8 Motion on a torus prof. dr. sc. Tamara Niksié *

An ordinary ring torus embedded in three-dimensional space can be described by the
parametric equations

z = (c+ acosv) cosu,
y = (c+acosv)sinu,

z = asinv,

for u,v € [0,27) and ¢ > a (both ¢ and a are positive constants). Some particle of mass
m is constrained to move on the surface of such a torus and is not subjected to external
forces (e.g. gravity).

1. Write down the Lagrangian and equations of motion. (1 point)

2. Derive the constants of motion and reduce the equation of motion to the equivalent
one-dimensional problem. (1 point)

3. Use the effective potential to discuss the qualitative nature of the orbits. Consider
all possible cases. (3 points)

v,
2m(c — a)
alized momentum) and that the particle starts from the v = 0 point (u is arbitrary).
Calculate the time needed for the particle to reach the v = 7 position. (3 points)

4. Assume that the energy of the particle equals F = (py, denotes the gener-

5. Finally, assume that the homogeneous gravitational field is switched on and discuss
qualitatively its influence on the particular orbits. (2 points)

*University of Zagreb, Faculty of Science, Department of Physics
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9 Almost oscillating doc. dr. sc. Nikola Poljak *

A solid (three-dimensional) semi-ball is placed on ice (in the homegeneous gravitational
field g), so that there is absolutely no friction between the object and the surface as in the
figure.

1. Determine the position of the center of mass of a semi-ball of radius of curvature r.
(1.5 points)

2. Determine the moment of inertia of the semi-ball around an axis passing through
the center of mass which is perpendicular to the axis of symmetry of the semi-ball.
The mass of the semi-ball is m. (2.5 points)

3. Write down the total energy of the semi-ball while it is left to move on its own and
describe the movement in words. (2 points)

4. The semi-ball will perform a movement that is almost oscillating. Write down the
equation of motion of the semi-ball. (1.5 points)

5. The solution to this equation is very complicated, however, the semi-ball is almost
oscillating. First, assume that the oscillations are small. Next, assume that the
solution is given by 6(t) = 6y cos(wt). Plug this solution into the equation of motion
and obtain the frequency of oscillation. # is the angle between the axis of symmetry
of the semi-ball and §. (2.5 points)

*University of Zagreb, Faculty of Science, Department of Physics
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10 Phase transitions in contagion models using complex
networks Matija Medvidovié, mag. phys.
prof. dr. sc. Davor Horvatié¢ *

In this problem, we are going to calculate the time evolution of a complex network de-
scribing, for example, propagation of a disease through a population. To start things off,
let us define a complex network as a graph for use in this problem. Graphs consist of:

e Vertices - labeled points in a plane, denoted by, for example, ()

e Edges - labeled lines connecting two vertices, denoted by, for example, (i, j)

Graphs can be viewed as generalized and irregular crystal lattices. Their geometrical
structure is captured by the adjacency matrix defined as:

A — 1 , if vertices (i) and (j) are connected by an edge
Y1 0 , otherwise

Additionally, we assign a quantity called the degree k; to each vertex (i):
ki = > Ay (13)
J

Simply put, k; is the number of edges attached to the vertex (7).

(1) - 1 ke

011000
1001 10| k=3
a e 10000 1| sky=2
= A=lo 1000 0| sk=1

010000

001000

— ks =1
ONONO _ |~

Statistical properties of networks are commonly described by the degree distribution
i - it is the probability that a randomly selected vertex from a given network will be of
degree k.

Consider a network with a general degree distribution py. Let each vertex (i) have an
additional internal variable o; = 0,1 denoting its "activity" (o; = 0 means the vertex is
inactive and o; = 1 means it is active).

Interpret the vertices as individual persons and edges as "coming into contact" (geo-
graphical proximity, common workplace etc.). If the person () is not affected by a disease
(active) and it comes into contact with a sufficient number of sick people (inactive) then
it may become sick itself.

Let us define the following processes of transferring the disease:

e A healthy person can become sick internally during the time interval At with a
constant probability pAt.

*University of Zagreb, Faculty of Science, Department of Physics

16



, PLANCKS 2018 Zagreb, Croatia Phase transitions

e A healthy person can become sick externally during the time interval At with
probability rAt if she/he has less or equal to m healthy neighbors. We assume that
the network is dense enough for m < min(k;) to hold (social networks usually are).

e A sick person becomes healthy during the time interval At with probability gAt.

So, to summarize, we define two ways of getting sick, one certain way of becom-
ing healthy again by introducing four parameters: probabilities p, r, ¢ and an integer m
defining the number of sick people one has to come in contact with in order to become sick.

Answer the following questions with the above described network representation of the
problem:

1. Denote the number of sick people at time ¢ by Ng(¢) in a population (network) of
N people and the fraction of sick people at time ¢ by x(t) = Ns(t)/N. You can ap-
proximate the probability that a randomly chosen vertex is sick by x.

Assuming that the sick and healthy people are well mixed in the network, write down
the approximate probability of a randomly chosen vertex of degree k (connected to
k other people/vertices) to have exactly n healthy vertices in its neighborhood in
terms of k, n, and x. Does the resulting distribution of n have a name?

Taking that into account, what is the probability gogi) (x) of there being less or equal

to m sick people in the neighborhood of that vertex? (1 point)

2. Using that result, write down the expected number of sick people Ng at time ¢ + At
using Ng at the previous timestep t. At each timestep, use

(@) = (ol (@)n = Y pr ol () (14)
k

as the probability a random vertex will have at less or equal to m healthy neighbors.
(2 points)

3. Once you have arrived at the discrete-time representation of the equation, show that
by taking the limit At — 0 one obtains the following dynamical equation for z:

Z—f =7l —x)pm(z) +p(1 —x) —qx (15)
(1 point)

4. For simplicity, from now on assume that ¢ = 1 and that the underlying network is
a regular graph: each vertex is of degree ko, exactly (it has ko neighbors). This
is equivalent to the cubic latice with dimensionality d = ko/2 in condensed matter
physics. What is the degree distribution py of such a graph? Does this choice sim-
plify the expression for ¢, (x)?

e For m = ko, find the fixed points x4(p,r) in parameter space defined by z = 0.

17
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e Write down the equation for fixed points in the case of m = kg — 1. Does a
nonzero solution always exist? Find the critical value r. = r.(ko) at which the
equation gets a nonzero solution for p = 07

Hint: Try representing the equations graphically and look for curve intersections.
(3 points)

5. Finally, in the case of m = ky — 1, define the critical exponents § and § by approxi-
mating x4(r, p) near the critical point (r = r. and p = 0, respectively):

zs(r,p = 0)oc|r — el (16)

zs(r = re, p)ocp”? (17)

Hint: It is worth noticing that the value of x, is small near the critical point r = r..
What are the values of 8 and 07 What is the order of such a phase transition?
Briefly comment on the difference/similarity between these values and the well-

known universal mean-field exponents often encountered in statistical physics.
(3 points)
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