
PLANCKS Student Competition 2017

Problem Folder
Brought together by Matthias Werl

In this problem folder you will find 10 different exercises out of the
various fields of theoretical physics. You will have 4 hours to to solve
as many as possible. The problems are designed in a way to make it
impossible to solve them all in the given time; which is why the teams
need to work togethter and develop a strategy to solve as many as pos-
sible in the given time.
Each problem is worth 10 points which are distributed over the various
tasks of each exercise. This results in a maximum score of 100 points.
The team with the most points will win the competition. The exercices
will be corrected and graded either by the contributing professors or by
experts in the respective field.
Calculators are allowed, as long as they are not programmable and
can only perform basic mathematical operations (addition, subtraction,
multiplication). The calculators will be checked by the respective su-
pervisors.
You will receive two sets of sheets of paper: one blank and the other
squared. Squared sheets of paper are for notes only and will not be
handed in. The blank sheets of paper will be handed in.
Please use a separate sheet for every problem. For each problem,
there is only one correct solution. If more than one solution is given,
the problem is marked as incorrect, so make sure you only mark your
final answer.

Good luck!
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Camilo Andrés Granados Buitrago, CERN

1 Laser ionization

Laser resonance ionization of neutral atoms is a powerful technique for the study
and manipulation of atomic samples. A first laser λ1 interacts with the neutral
atom bringing it from the ground state |0〉 to an exited state |1〉 with opposite par-
ity. When excited, the neutral atom is finally ionized using a second laser λ2 which
can remove an electron via an auto-ionizing state or towards the continuum, pro-
vided that the sum of the photon energies λ1 + λ2 is greater than the ionization
potential of the atom.

Questions:

• Consider an atom of 63Cu moving with a velocity vx . For the ionization pro-
cess to take place the wavelength of the |0〉 to |1〉 transition of an atom at rest
is l1 = 350 nm. If the atom is moving with vx = 550 m

s , calculate the value
of the new wavelength in order to excite the neutral atom (permitting the
transition |0〉 to |1〉) in:

(a) Figure 1

(b) Figure 2

(c) If now we consider an ensemble of atoms with a natural linewidth of
21.6 MHz for the state |1〉, confined in a hot cavity at T = 2000 K, and
the laser bandwidth is negligible, what is the:

– Einstein coefficient
– Atomic linewidth

(d) If the hyperfine splitting (Consisting of 4 allow transitions) for the ground
state is 11 GHz and for the excited state is 1 GHz, how many resolved
peaks will appear in the full HFS scan?

• Imagine the same ensemble of atoms, this time moving in the same direction
inside a supersonic gas-jet of velocity vx and length x. What is the relation
between the laser repetition rate and the velocity of the atoms in order to
irradiate all the atoms in the ensemble?
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Christopher Albert, TU Graz

2 Generalised 1D Brownian motion

This problem is about generalised one-dimensional Brownian motion, which is math-
ematically similar to the treatment of collisional processes in plasmas. We consider a
heavy Brownian particle (dust) in a background of many light particles (molecules)
where the background has temperature T . The background particles randomly hit
the Brownian particle and influence its dynamics by collisions.

1. First consider the collisionless case for Newtonian Mechanics of a single Brow-
nian particle of mass M at position X (t) and velocity V (t). (Hint: don’t think
in a complicated way)

(a) What are the equations of motion for X (t) and V (t) if a force F(X (t))
is acting on the particle? Write them in the form

d
d t

X (t) = . . . , (1)

d
d t

V (t) = . . . . (2)

(b) If we approximate the differential timestep d t by a small but finite step
∆t starting at time t, what are the approximate changes in position
∆Xorb = X (t +∆t)− X (t) and velocity ∆Vorb = V (t +∆t)− V (t) after
the time ∆t has passed?

∆Xorb = . . . , (3)

∆Vorb = . . . . (4)

2. Now we consider an ensemble of non-interacting identical Brownian parti-
cles, still neglecting collisions with the background. In the force-free case
F = 0, the evolution of their probability density f (x , v, t) in phase-space with
coordinates (x , v) is given by

∂ f (x , v, t)
∂ t

+ v
∂ f (x , v, t)
∂ x

= 0. (5)

To distinguish the (x , v) used as an independent variables here, they are de-
noted by small letters. This is in contrast to the orbit quantities X (t), V (t) in
the particle picture, being functions of time.

(a) What is the mathematical and physical connection to the particle picture
of 1.? (Hint: use a total time derivative of f with x = X (t), v = V (t)
from 1a with F = 0)

(b) What changes in Eq. (5) if we introduce a force F(x)?

3. If we allow collisions of the ensemble of Brownian particles with the back-
ground (not with each other), Eq. (5) is changed to

∂ f (x , v, t)
∂ t

+ v
∂ f (x , v, t)
∂ x

= νc
∂

∂ v

�

v2
T
∂ f (x , v, t)
∂ v

+ v f (x , v, t)
�

. (6)

Here, the zero on the right-hand side in Eq. (5) has been replaced by a Fokker-
Planck collision operator, where the collision frequency νc measures how fre-
quently collisions occur in time, and the thermal velocity vT =

p

2T/M is the
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Christopher Albert, TU Graz

average velocity magnitude of the Brownian particle ensemble if it had the
same temperature T as the background.

(a) For a homogenous system with ∂ f /∂ x = 0, what is the stationary dis-
tribution f∞ for which f does not change in time anymore?

(b) What is its physical meaning of f∞? Does νc appear in f∞? Why/why
not? Explain mathematically and physically.

(c) What is the stationary distribution in the general case with ∂ f /∂ x 6= 0
with a conservative force F(x) acting as in 2b)?

4. Switching back from the ensemble to the particle picture, we can represent
the orbit of the Brownian particle including randomisation by collisions with
the background using

V (t +∆t)− V (t) =∆Vorb − νcV (t)∆t +
q

2νc v2
TΘ
p
∆t . (7)

Here, ∆t is a sufficiently small time-step, Θ is a random number between 0
and 1 and ∆Vorb is taken from 1b).

(a) Based on the similar form of ∆Vorb of 1b), how can the second term on
the right-hand side of Eq. (7) be interpreted in terms of a force acting
on the Brownian particle?

(b) Where does this so-called drag force appear in the Fokker-Planck equa-
tion? (Hint: move a term from the operator on the right-hand side to
the left-hand side)

(c) How does an increase or decrease of the collision frequency νc affect the
system’s approach towards the stationary state over time?
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Caterina Doglioni & Peter Christiansen
Lund University

3 Particle Physics

The following exercises concern the fundamental particles and forces
of our universe. The theory we will use as underlying framework is the
Standard Model of particle physics. All you will need for the following
exercises are the following diagrams, and some intuition.

Figure 1 shows a sketch of the particles and the interactions within the
Standard Model. Particles interacting with each other are connected by
a line. Different colours represent different forces. The particles that
are mediators of the forces have a larger border of the same colour as
the interaction they mediate. In the interactions described by the Stan-
dard Model, one needs to conserve the following quantum numbers:

• Lepton number, where charged leptons and neutrinos have a lep-
ton number Lx where x is the family (electron, muon, tau);

• Baryon number, where baryons like protons, neutrons, pions and
kaons have a baryon number of 1, and anti-baryons have a baryon
number of -1;

• Electric charge.

Figure 1: A graphical illustration of the SM interactions and forces.
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Caterina Doglioni & Peter Christiansen
Lund University

Figure 2 shows how different kinds of particles interact in a general-
purpose detector like the ATLAS detector, and shows a cross-section of
the ATLAS detector.

Figure 2: A graphical illustration of the particle interactions taking place in
the ATLAS detector, together with a cross-section of the detector itself. Source:
http://atlas.ch/ and http://www.particleadventure.org/
.
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Caterina Doglioni & Peter Christiansen
Lund University

1.1 The center of mass energy at which protons are collided at the Large Hadron
Collider is 13 TeV. The average energy in Joule of a Wasa cracker is 60 kilo
calories (source: a packet of Wasa). 1 eV is equivalent to 3.83 10−20 calories.
Use natural units, where h and c=1.

a) What is the LHC energy, in calories (assuming you could transform
all of the cracker’s energy in kinetic energy you could give to a pro-
ton) ?

b) How many Wasa crackers do you need to equate to the energy of an
LHC pp collision?

c) Puzzled? How come the LHC is considered so powerful?

1.2 Classify the following particle reactions as strong, electromagnetic, weak, or
impossible, based on the Standard Model interactions and conservation laws
above. In each of the reactions, specify which particle mediates the force.
Draw diagrams that connect initial state particles, force mediators and final
state particles ("Feynman diagrams"), paying attention to the conservation
laws at every junction ("vertex"). Note that the mediators of the interaction
are not mentioned explicitly in the particle reactions below.

a) νe + ν̄τ→ e− +τ+

b) µ− + p→ νµ + n

c) K−→ µ− + ν̄µ
d) n→ p+ e−

e) π0→ γ+ e+ + e−

f) Σ0→ Λ+ γ
g) e−→ µ− + ν

1.3 The ATLAS detector is one of the main multi-purpose detectors at the Large
Hadron Collider, currently it is operating at a centre of mass energy of 13 TeV
for pp collisions.

Figures 3-6 are graphical depictions of real collision events recorded at the
Large Hadron Collider (LHC) by the ATLAS detector in 2010 and 2012. It is
not possible to exactly determine what happened, but select for each figure
the most likely interaction that took place from the list below (note: there
does not need to be a 1:1 correspondence), explaining your reasoning behind
the choice, and mention which force is involved.

– W → µ+ νµ candidate

– Z → µ+ +µ− candidate

– J/Ψ→ e+ + e− candidate

– p+ p→ 2 jets candidate (Where a jet is a collimated stream of hadrons)
Hint: Ignore the underlying background processes, focus on the high-
lighted tracks. The dotted line refers to a track who although not ob-
served by the detector is inferred by some energy imbalance in the event.
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Caterina Doglioni & Peter Christiansen
Lund University

Figure 3: A graphical illustration of the ATLAS detector for Event 14321500, show-
ing the a 3D profile of the inner detector, magnets and muon spectrometers.

Figure 4: A graphical illustration of event 23181153. Left: view looking down the
barrel, where the inner rings are the electromagnetic and hadronic calorimeters
and the outer panels are the muon detectors. The tracks of interest are colored
pink and the grey tracks are the background events. Top right: side view. Bottom
right: energies recorded by the calorimeters against the track “angles” η.
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Caterina Doglioni & Peter Christiansen
Lund University

Figure 5: ATLAS event display. Left: view along the beam pipe, showing the tracks
from the event and the detector calorimeters. Bottom right: side profile. Top
right: is a plot displaying the energies of the two tracks (in yellow) recorded in
the calorimeters againist their “angle” η (pseudo-rapidity). Bottom right: looking
down the barrel of the detector. The background tracks are colored blue.

Figure 6: ATLAS event display. This is a 3d mid-way section of the ATLAS detec-
tor, also called R− z view: what you see in shaded grey and black are the toroidal
magnets and their support structures. The energy deposited in the electromag-
netic and hadronic calorimeters is represented as yellow and green rectangles, of
height proportional to the magnitude of the transverse momentum recorded by the
calorimeters.

8



Mario Villa, TU Vienna

4 Nuclear/Neutron physics

1. Calculate the energy per fission of one atom of uranium 235 (235U). How
much energy can be obtained from one kg of 235U?

2. Compare this energy to the energy obtained by the fusion from a Deuterium
(2H) and a Tritium (3H) atom. How much energy can be obtained by 1 kg of
the necessary istotopes?

The most common fission products of 235U are 139Ba and 95Kr.
Required masses: m235U = 235.0439u, m139Ba = 138.9116u, m95Kr = 94.9153u,
m2H = 2.0141u, m3H = 3.0160u, m4He = 4.0026u, mn = 1.0087u.
1u= 1.66057 · 10−27kg.

3. Calculate the energy of a neutron scattered at a stationary nucleus with the
weight A. Consider a neutron with the energy E = mv2

2 in the laboratory (L)
system incident upon a stationary nucleus of mass M. Since the relative masses
are important in the kinematics, we set the mass of the neutron m = 1 and
the mass of the nucleus M = A. It is convenient to convert to the center of-
mass (CM) system as indicated in Fig. 1, because the elastic scattering event
is isotropic in the CM system. Give the energy of the neutron after the scat-
tering process.

Figure 1: Scattering of a neutron at a nucles. Lab system (L) and Center of mass
(CMS) system
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Dirk van der Marel, University of Geneva

5 Solid state physics

I, Background: The color of a substance is caused by selective, i.e. frequency de-
pendent, dissipation and dispersion of electromagnetic radiation. A vector poten-
tial A oscillating at a frequencyω induces a current density j at the same frequency.
This is described by the linear relation j = iωσ(ω)A, where σ(ω) is a complex
frequency dependent function called "optical conductivity" which characterizes the
optical properties of the substance. Throughout this problem set you may assume
for simplicity that the electrons move in a one-dimensional space. The quantum
theory of matter coupled to radiation provides the following expression for the real
(dissipative) part of the optical conductivity

Reσ(ω) = Reσ(−ω) =
e2

Vħh
Im

∫ ∞

0

eiωt 〈[ x̂(t), υ̂]〉 d t (1)

where e is the electron charge, V the sample volume, and 〈〉 is an ensemble average
over the Hamiltonian eigenstates of the substance. The position (x) and velocity
(υ) operators satisfy the equation of motion

υ̂(t) =
i
ħh
�

Ĥ, x̂(t)
�

(2)

At time t = 0 the Heisenberg representation yields υ̂(0) = υ̂ and x̂(0) = x̂ .
Question I: Show that the optical conductivity satisfies the following sum-rule

∫ ∞

0

Reσ(ω)dω=
πe2

2Vħh2 Re

�

x̂ ,
�

Ĥ, x̂
���

(3)

II, Background: The momentum operator p̂ and the position operator satisfy the
Heisenberg uncertainty relation

[ x̂ , p̂] = iħh (4)

Eq. (4) remains valid in a crystalline environment, but the set of eigenvalues of p̂

p̂|q〉= q|q〉 (5)

is confined to a finite interval, q ∈ {−ħhπ/a;ħhπ/a} where a is the lattice constant.
In a metal in its simplest incarnation, one of the bands (the "conduction band") is
partially occupied with electrons and all other bands are either fully occupied or
completely empty. The corresponding band-energies εc(q) are the eigenvalues of
the Hamiltonian operator

Ĥ = εc(p̂) (6)

which in a solid environment is usually some complicated non-linear function of
the momentum operator p̂. In vacuum this reduces to the familiar expression
ε(p̂) = p̂2/2m, but in a solid environment the p̂-dependence is different and varies
strongly from one material to another. The optical conductivity has two types of
contributions:

σ(ω) = σc(ω) +σb(ω) (7)

The current carried by the electrons in the conduction band described by Eq. (6)
gives rise to the contribution σc(ω), which corresponds to a zero-frequency mode
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Dirk van der Marel, University of Geneva

with a finite width due to scattering. The finite-frequency ("bound charge") con-
tribution defined as σb(ω), comes from optical transitions between the (fully and
partly) occupied and (fully and partly) empty bands.
Question II: Assume that the substance contains a single electron, and that it occu-
pies momentum eigenstate |q〉 in the conduction band. Leave all other bands out of
consideration and show with the help of Eqs. (3), (4) and (6) that σc(ω) satisfies

∫ ∞

0

Reσc(ω)dω=
πe2

2V
∂ 2εc(q)
∂ q2

(8)

III, Background: The many-electron generalization of Eq. (8) is a somewhat lengthy
exercise which we are not asking you to do. It has the following result

∫ ∞

0

Reσc(ω)dω=
πe2

2V

∑

k

nc(k)
∂ 2εc(k)
∂ k2

(9)

where nc(k) ∈ {0;1} is the average number of conduction electrons with momen-
tum k. In the limit of very high temperature, nc(k) tends toward a k-independent
constant: limT→∞nc(k) = nc .
Question III: Show that

lim
T→∞

∫ ∞

0

Reσc(ω)dω= 0 (10)

IV, Background: However, since electrons can be thermally excited from one band
to another, the restriction to a single band is not justified at finite temperature. In
fact the following sum-rule for the full conductivity (σ = σc + σb) holds for any
temperature

∫ ∞

0

Reσ(ω)dω=
πNe2

2meV
(11)

where me is the free electron mass and N is the total number of electrons summed
over all (partly or fully) occupied bands. Bismuth-antimony alloys are very interest-
ing materials that exhibit a topological insulating phase for certain compositions.
Pure bismuth is a semimetal, for which the main characteristics of the electronic
structure are displayed in Figure 1 (an additional band of heavy hole carriers is left
out of consideration for simplicity). The conduction band of these materials is char-
acterized by a large value of the inverse effective mass 1/mc = ∂ 2εc(q)/∂ q2|q=0,
in other words mc < me. Since only a small number of q-states are occupied, all
having q ' 0, the spectral weight of the zero-energy mode satisfies

∫ ∞

0

Reσc(ω)dω=
πNce

2

2mcV
(12)

where Nc is the number of electrons in the conduction band.
Question IV: Given that mc < me, would nature allow a situation where the conduc-
tion band (red in Figure 1) would be the only band that is (partly or fully) occupied,
implying that the blue band would be absent from Figure 1 ? Explain why or why
not.
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Dirk van der Marel, University of Geneva

Figure 2: Left: Single crystal of bismuth. Middle panel: Schematic of the two
bands close to the Fermi energy which are the most relevant ones for the optical
spectrum shown in the right hand panel: The conduction band (red) crosses the
Fermi energy EF . A fully occupied band (blue) has its maximum about 0.02 eV
below EF . Right hand panel: Optical conductivity of bismuth. Note the presence
of the zero-frequency mode, σc(ω), below ħhω ∼ 0.02 eV for T = 20 K (shifting
to higher energy for higher temperatures). The rise in conductivity above 0.02
eV corresponds to σb(ω) and is due to optical transitions between the two bands
indicated in the middle panel.
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Anton Rebhan, TU Vienna

6 Two accelerating locomotives connected by a tin-
can-telephone

On a very long straight railway, two locomotives are about to get moving in the
same direction at relativistic speeds by igniting a series of high-power fuel (Presto
Logs aka Superzündis)1, each of which will instantaneously increase their velocity
by the same amount ∆v = 3

5 c = 0.6c with respect to their present inertial frame.
The two locomotives are separated by a clear space of 9m= 30 light-nanoseconds

(lns) over which a rubber thread is spanned, connecting the two ends of a tin-can-
telephone, which only works when the rubber thread has been stretched to its max-
imal length of 30 lns, but the thread would break if kept stretched any amount
beyond that after the acceleration phase.2

The train drivers (Doc and Marty) are equipped with perfectly accurate and
synchronized clocks. They will ignite their presto logs according to the time table
given to them. The aim is that they reach more than 95% of c and that the thread
between them does not break and is in place for a tin-can-communication (through
which the drivers can compare their clock readings when moving peacefully at their
final velocity).

It is clear (at least to Doc) that they cannot just ignite their presto logs at exactly
the same time as given by their respective clocks. Explain why!

Marty, the driver in the first (front) locomotive is instructed to ignite his set of
presto logs every 10 seconds after 12:00 on his clock. Work out

(a) how many presto logs each train driver minimally needs,

(b) exactly when the logs in the second (behind) locomotive have to be ignited
by Doc,

(c) what is the time difference that Doc and Marty find when comparing their
clocks over the tin-can-telephone (assuming that they know exactly the ve-
locity of sound in their telephone cable so that they can accurately subtract
the obvious delays in their communication).

1Back to the Future Part III
2That is, ignore the stress from shock waves caused by the sudden acceleration of the ends of the

rubber thread (just assume that it never slacks and that it is also robust under any transitory local
deformation that may occur when pushed or pulled from one end until everything is settled in a new
inertial frame). Also neglect the size of the locomotives and consider them pointlike.
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Robert Enzinger, TU Graz

7 Carnot cycle with van-der-Waals gas

We are looking at a carnot cycle (adiabatic-isothermal thermodynamic cycle) with
a van-der-Waals (vdW) gas as working medium.
At the start point (1), the gas has a reduced temperature of T r

1 = 1.5, its reduced
(specific) volume is v r

1 = 1. In the first step, the gas is (isothermally) expanded to
twice its starting volume, with the endpoint of the subsequent adiabatic step being
on the critical isothermal line. The specific heat capacity (at constant volume) is
given by CV

n = 3R, so cV = 3.

Hint:
The vdW gas equation is given by

�

p+ a
v2

�

(v − b) = RT , where a gives the average
attraction between particles and b is the volume of a mole of particles. It is charac-
terized by the critical point with coordinates (pk, vk, Tk), where Tk =

8a
27Rb , pk =

a
27b2

and vk = 3b. The reduced quantities are given by T r = T
Tk

, pr = p
pk

and v r = v
vk

.

(a) For an adiabatic process with a vdW gas, the following relation between tem-
perature T and specific volume v holds:

T cv(v − b) = const (1)

Express this equation and the vdW equation only as a function of the reduced
quantities.

(b) Explicitly calculte the reduced quantities in every point of the cycle.

(c) Sketch the process qualitatively into the pv-diagram below. The critical point
k on the critical isothermal line Tk alongside with other isothermal lines are
already plotted.
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In the following points, calculate with the non-reduced quantities:

(d) Derive the formulae for exchanged specific heat quantities for every step.
Hint: The differential for the (specific) internal energy for the vdW gas is given
by: du= cV RT + a

v2 dv. Use the first law of thermodynamics.

(e) Give a formula for the efficiency of the thermodynamic cycle only as a function
of the specific volumina vi and temperatures Ti of the corner points.
Show, that this efficieny is the same as the efficieny of a carnot cycle working
with the ideal gas between the same temperature difference.
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Roland Resel, TU Graz

8 Crystal geometry

8.1 Part A - Cairo Tiling

For the Cairo tiling a two-dimensional plane is fully filled by pentagons. The geom-
etry of a single pentagon is formed by four identical side lengths (blue colour) and
one different side length (red colour) and angles of 90 ◦ and 120 ◦ (see Fig. 1).

(a) Determine the 2D Bravais lattice of the Cairo tiling.

(b) Draw the unit cell vectors a and b and the enclosed angle γ.

(c) Give a derivation (or an argument) for the given angle γ.

(d) How many tiles are within one unit cell?

(e) Determine the 2 dimensional wallpaper group of the Cairo tiling. All possible
wallpaper groups are given in Fig. 2

A Bravais lattice is an infinite array of discrete points which are generated by a
set of discrete translation vectors which are multiples of the unit cell vectors a and
b. The tiling has to be reproduced by the assignment of a set of tiles to each lattice
point of the Bravais lattice.

The five existing 2D - Bravais lattices:

– cubic: a = b, γ = 90◦

– hexagonal: a = b, γ = 120◦

– rectangular: a 6= b, γ = 90◦

– rectangular centered: a 6= b, γ = 90◦ and two lattice points per unit cell

– oblique: a 6= b, γ 6= 90◦

Priority rules to determine 2D Bravais lattices:

i Highest symmetry (cubic > hexagonal > rectangular > oblique)

ii Smallest unit cell area

iii Smallest lattice constants a and b

iv a < b, γ ≥ 90◦
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Figure 1: Cairo Tiling

Figure 2: The 17 possible wallpaper groups.
P . . . Primitive lattice
C . . . Centered lattice
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8.2 Part B - Trihex Tiling

For the triangle/hexagon tiling (TriHex) a two-dimensional plane is fully filled by
two different types of tiles: one type of tile is a regular triangle and the second type
of tile is a hexagon. Two different side lengths are involved: blue and red with a
length ratio of 3:2, respectively. The arrangement of the tiles are given by Fig. 3.

As in Part A, determine the points (a)-(e) for the Trihex Tiling

Figure 3: TriHex Tiling
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Enrico Arrigoni, TU Graz

9 Spin Qubits

Hint: This problem should not be addressed by brute force. It is very useful to take
into account spin rotation invariance.
In particular, when combining two systems described by angular momenta ~J1 and
~J2, then one can choose a basis of eigenvectors of ~J2 and J z , where ~J = ~J1 + ~J2 is
the total angular momentum operator. Also think how ~J2 is related to the scalar
product ~J1 · ~J2.

Figure 1: Setup consisting of four spin- 1
2 particles.

Consider a qubit setup consisting of four spin- 1
2 particles in a square arrange-

ment (see Fig. 1). We work in units with ħh= 1.
The Hamiltonian of the system is:

H =
1
2

∑

i 6= j

Ji j ~Si · ~S j (1)

where
~S j =

�

S x
j , S y

j , Sz
j

�

(2)

denotes the three components of the quantum mechanical spin operator 1 of parti-
cle j ( j = 1, 2,3, 4), and the dot “·” denotes scalar product over these components.
The coupling constants Ji j can have the values JA or JB according to the figure.

Consider first the case JA < 0, JB < 0:

(i) Determine the energy and degeneracy of the ground state of Hamiltonian
from (1).

The system is prepared at t = 0 in a state consisting of all spins oriented in the
x direction. At the same time a magnetic field, described by the Hamiltonian

HB = −B
4
∑

i=1

Sz
i . (3)

1We omit the ˆ to indicate operators.
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is applied in the z direction.

(ii) How long does it take to the system to go back to the state with all spins
oriented in the x direction?

(iii) Determine the time dependence of the magnetisation M x in the x direction,
where

Mα ≡



Sαtot

�

Sαtot ≡
4
∑

i=1

Sαi α= x , y, z . (4)

and the expectation value 〈· · · 〉 is taken with respect to the above-mentioned
time-dependent state.

We now go back to the hamiltonian from (1) (without magnetic field (eq. (3)))

(iv) For the case JA = JB, determine all eigenvalues of H as well as their degen-
eracies

(v) Consider now the case ∆J ≡ JB − JA 6= 0, but ∆J small enough 2.
Determine again all eigenvalues of eq. (1) as well as their degeneracies.

From now on we consider the case JA > 0, JB > 0 and ∆J 6= 0

(vi) Consider again the action of a magnetic field, (3). Determine the magnetc
susceptibility

χ ≡
d M z

dB

�

�

�

�

B=0

(5)

where the expectation value in eq. (4) is carried out with respect to the
ground state of H +HB.

(vii) Consider now ∆J > 0 and a magnetic field applied to the first spin only,
described by the Hamiltonian

Hloc = −b Sz
1 . (6)

determine the local susceptibility

χloc ≡
dmz

d b

�

�

�

�

b=0

(7)

where
mz ≡




Sz
1

�

(8)

and the expectation value is evaluated with respect to the ground state of
H +Hloc (no HB!).

2We always consider ∆J small enough such that there are neither level crossings nor accidental
degeneracies.

20



Markus Koch & Andreas Hauser, TU Graz

10 Tribute to Joseph Ritter von Fraunhofer

10.1 Part A - Fraunhofer diffraction - The single slit

(a) Calculate the distribution of the electrical field E(Θ) as well as the intensity
(irradiance) I(Θ) behind a single slit as function of the angle Θ in the Fraun-
hofer limit (R»D), according to Fig. 1. The slit width is D (y direction) and
the slit is assumed to be indefinitely long (z direction).
Hint: Use the expansion r(y) = R− ysin(Θ).

Figure 1: The single slit

(b) Sketch the intensity distribution.

10.2 Part B - Fraunhofer lines D1 and D2 - The sodium doublet

The Fraunhofer lines D1 and D2 appear as dark features (adsorption lines) in the
spectrum of the sun (Fig. 2). The D1 line, which is higher in energy, is found at
589.0nm.
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Figure 2: Spectrum of the sun

The semiclassical derivation of the spin orbit coupling in atoms is based on a co-
ordinate transformation into the rest frame of the valence electron. In this picture,
an orbiting (singly charged) ion creates a field B = −(v × E)/c2 felt by the valence
electron. In this B-field, the magnetic momentum µ of the electron, coupled to the
electron spin s via µ = gs ·µb ·s

ħh , gives rise to an energy contribution Eso = −µ · B,
which is known as spin-orbit interaction energy. A factor 0.5 needs to be added
here due to the incorrect assumption of a linear motion of the electron in the trans-
formation (Thomas-Factor).

Important quantities:
µb =

eħh
2m ; gs = 2; me = 9.10939 · 10−31kg; ε0 = 8.85 · 10−12[ F

m ]; ħh =
h

2π =
1.0546 · 10−34Js; e = 1.6022 · 10−19C

(a) Write Eso as a function of the angular momentum l and the spin s of the
valence electron. Introduce the total angular momentum j = l + s and try
to find an expression for Eso where the operators can be replaced by their
corresponding quantum numbers j, l and s. The radius of the nth orbit can be
estimated via Bohrs ansatz rn =

a0n2

z with a0 = 0.529 Å and z = 11.

(b) With this formula, calculate the energy difference between the D1 and the D2
line of sodium in cm−1. This splitting is a consequence of the SO-coupling in
an electronically excited state of sodium where the 3p orbital is singly occu-
pied.
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