
 

I.  Spheres in Contact 

 

 
 

a). 
22

2

22
yx

mvmv
mgymgh  , Rh 3 ,   (1)  0.75p 

 
222 4Ryx  .      (2)  0.75p 

       

From Eq. (2): 

 00  yx yvxvyyxx   ,    (3)  1p 

 00 2222  yx vvyyxxyyyxxx  .  (4)  1p 

From Eqs. (1-3): 
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From Eqs. (4-6, 7, 8): 
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One introduces 0y  inEqs. (5, 6) and one obtains,: 
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 Graphs for )/(2 gRvx , )/(2 gRv y
for ]3,[/ 0xRy  : 
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c)The maximum height for sphere 1 after collision with the table: 
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II. The apparent air temperature in a windy winter day 

Consider Ox the direction perpendicular to the skin. 

 

The heat conduction equation (Fourier’s law): q(x) = −κ
∂T

∂x
(1)                                  1p 

 

For distance >> mean free path, q(x) = q = const.and the temperature of the 

surroundings  T(d) = Tsurr, the solution is: T(x) = −
q

κ
(x − d) + Tsurr(2)         1p 

 

The Newton law: q = −h(Text − Tbody)(3)                                                                2p 

 

whereText = T(0)is the temperature of the surroundings in the vicinity of the interface. 

From eqs. (2) and (3) one obtains Text =
hd

κ
(Tbody − Text) + Tsurr(4)                   1p 

 

Eq. (4) is valid in the conditions of calm atmosphere. 

Turbulence: The wind produces a strong convection, Text = Tsurrand the Newton law 

is q′ = −h(Tsurr − Tbody)(5)                                                                                     1p 

 

In the case of a calm atmosphere, T(d) = T′surr  and: T(x) = −
q′

κ
(x − d) + T′surr      1p 

 

At the body interface T(0) = Tsurr =
q′d

κ
+ T′surr(6) 

The equivalent of eq. (4) for the calm atmosphere and T(0) = Tsurr,  

 Tsurr =
hd

κ
(Tbody − Tsurr) + T′surr(7) 

Finally T′surr = Tsurr − (Text − Tsurr)
Tbody−Tsurr

Tbody−Text
                                                1p 

 

With the numerical values Text = 5oC; Tbody = 37oCand Tsurr = −5oC   one 

obtains T′surr = −18oC                                                                                                1p 

 

 

 

 

 

 



III. Huygens cycloidal pendullum 

1. We have 
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The kinetic energy is: 
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The potential energy is: 
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The expression of the Lagrange function is: 
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2. We change the variable as follows 
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With the notations:  m’ = 4 m a2   and  k = m g a, the Lagrange function reads 

2

2

2

1
'

2

1
 kmL 



, 

which is identical to the Lagrange function of the linear harmonic oscillator           1 p 

 

The Lagrange equation is 
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We need to determine the coefficients A and B. By using the initial condition 

x2(t = 0) = 2 a = a[1 – cos α(0)], we obtain 

cos α(0) = – 1, i.e. α(0) = ±π.   

Further we use the other initial condition 

x1(t = 0) = – a π = a [α(0) + sin α(0)], which leads to α(0) = – π . 

This is equivalent to β (0) = – 2 = A                                                                           1 p 

Also we have  0)0( 
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which leads to B = 0. Therefore, the law of motion is: 
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3. Since β is a periodic function, the period of oscillation is obtained as follows 
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IV. Piezoelectric voltage from super-currents 

1. No matter the turns are made of normal or superconducting material, all wires will experience the 

same electromagnetic force when under the action of an external magnetic field. With parallel super-

currents flowing, all turns will experience attracting forces (0.5 points) and will compress the piezo 

stacked ceramic (0.5 points). The turns are now separated by dd   and a voltage drop dNU    

develops across the stacked transducer. At equilibrium, the resulting compression force from super-

currents is balanced by the Hooke’s elastic force in piezoceramic. (1 point).   

 

NOTE: It might possible that some students will argue that turns are not driven by electromagnetic 

forces due to the expulsion of magnetic field from superconductors (Meissner-Ochsenfeld efect). 

However, the argument is not valid since the electrical currents in superconductors are sustained by the 

surface region (as shown by Ampere’s law) penetrated by the magnetic field. 

 
2. When reversing the flow of supercurrents we still have parallel currents, and the attracting character 

of electromagnetic forces is preserved. The piezoelectric voltage exhibits even dependence on I. (1 

point) 

 

3. As a result of streching or compressing the stack, the magnetic inductance slighty changes. (0.5 

points) If the super-current will stay the same, a flux variation   will be produced with the result of 

an induced electromotive force (Fraday’s law). (1 point) In a superconductor, such an induced e.m.f. 

will lead to infinite acceleration of charges. Hence, to preserve the magnetic flux, the supercurrents 

need to obey the constraint (1.5 points) 

 

constILIL  2211 .                                                                     (1) 

 

4. The key point is to analize how the super-current depends on the length of the stacking transducer. 

For two different currents, the inductances are given by 
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where 0 is the magnetic permeability, 2RS  the area, 2,1d the separation of turns with the super-

currents  2,1I  flowing. Then, (1) yields 

 

1212 / ddII   .                                                  (0.5 points ) (2b) 

 

A switching between two different supercurrents 21 II  , will change in the magnetic energy stored in 

transducer  
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As a consequence, an amount of work is done for any change between two super-currents. From (3), 

we deduce that at any given super-current 
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At equilibrium, the resulted compression from magnetic forces is balanced by the elastic Hooke’s force 
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At any given super-current I flowing, the compression of the stack is 
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This compression generates a piezoelectric voltage drop 
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V. Sum Rules 

1. Show  that  𝑚𝑘 = ⟨𝐸0|𝐹(𝐻 − 𝐸0)
𝑘𝐹|𝐸0⟩                                                               2 p 

2.The proof of 𝑚1 =
1

2
⟨𝐸0|[𝐹, [𝐻, 𝐹]]|𝐸0⟩ and the answer  that  𝑚1represents the total 

energy transferred to the system by the excitation   𝐹                                                2 p 

3. The explicit proof of  𝑚1 =
ℏ2

2𝑚
⟨𝐸0| ∑ (∇𝑓(𝑄⃗ 𝑖))

2
𝐴
𝑖=1 |𝐸0⟩ by taking into account 

the fundamental commutation relations                                                                      1 p 

4. The term   
ℏ2

2𝑚
⟨𝐸0| ∑ (∇𝑓(𝑄⃗ 𝑖))

2
𝐴
𝑖=1 |𝐸0⟩  is related to the energy absorbedby  all 

nucleons and therefore the energy weighted sum rule encodes the energy 

 conservation                                                                                                               1 p 

 

5. 𝜎𝐷 =
2𝜋2𝑒2ℏ

𝑚𝑐

𝑁𝑍

𝐴
                                                                                                        3 p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VI. Dynamical Symetries 

1. The Runge-Lenz operator has to be Hermitian                                                      4 p 

2. Indicate the condition to be a constant of motion: [𝐻, 𝑀⃗⃗ ] = 0                              1 p 

3. The explicit proof of [𝐻, 𝑀⃗⃗ ] = 0                                                                           1 p 

4.  Show that𝑀⃗⃗  behaves like a vector operator i.e.[𝐿𝑖, 𝑀𝑗] = 𝑖ℏℰ𝑖𝑗𝑘𝑀𝑘                   2 p 

4. Explicit proof of 𝑀⃗⃗ ∙ 𝐿⃗ = 0                                                                                    1 p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII. Neutron Star 

(a) Expression of the nuclear density is the following: 

𝜌 =
𝑀(𝐴, 𝑍)

𝜈
= 3

𝑀(𝐴, 𝑍)

4𝜋𝑅3
 

If a spherical body is built, layer with layer, a radius r can be obtained, as well as a 

new mass  M0(A,z)r3/R3. An additional new layer having the dimension dr involves an 

increase in mass given by 4лr2ρdr. Taking into account that this layer is attached at a 

system having a radius r, the  gravitational potential has the following form: 

−𝑔
𝑀(𝐴, 𝑍)𝑟2

𝑅3
 

Therefore, the contribution of the gravitational potential to the energy has the 

following form: 

𝑑𝑈 = −
𝑔𝑀(𝐴, 𝑍)𝑟3

𝑅3
4𝜋𝑅3𝜌𝑑𝑟 = −𝑔

𝑀(𝐴, 𝑍)

𝑅3
4𝜋

3𝑀(𝐴, 𝑍)

4𝜋𝑅3
𝑟4𝑑𝑟 =

= −3𝑔
𝑀2(𝐴, 𝑍)

𝑅6
𝑟4𝑑𝑟 

3 p 

The potential energy for whole system can be obtained integrating the previous 

relation, namely:  

𝑈 = ∫ 𝑑𝑈
𝑅

0

= ∫ 3𝑔
𝑀2(𝐴, 𝑍)

𝑅6
𝑟4𝑑𝑟

𝑅

0

= −
3𝑔𝑀2(𝐴, 𝑍)

𝑅6

1

5
𝑟5 │

𝑅
0

= −
3𝑔𝑀2(𝐴, 𝑍)

5𝑅
 

𝑈 = −3𝑔
𝑀2(𝐴, 𝑍)

5𝑅
 

2 p 

(b) For a neutron star  Z = 0, and A ≡ N. The gravitational field will give a positive 

contribution to the binding energy. Therefore, the expression of the binding energy 

will be the following: 

𝐵(𝑁, 0) = (𝑎𝑉 − 𝑎𝐴)𝑁 − 𝑎𝑆𝑁
2 3⁄ + 𝑔

3(𝑁𝑀𝑛)
2

5𝑅𝑆
=

= (𝑎𝑉 − 𝑎𝐴)𝑁 − 𝑎𝑆𝑁
2 3⁄ +

3

5
𝑔

𝑁5 3⁄ 𝑀𝑛

𝑟0
 

where 𝑅𝑆 = 𝑟0𝑁
1 3⁄                                                                                                    1 p 



 

Two ways can be used for numerical solution, namely: 

(A) complete calculation;   

(B) introduction of the hypothesis 𝑁 ≫ 𝑁2 3⁄   ,for the neutron star.  

0,5 p 

In this second case the surface term vanish and the expression of the binding energy 

can be written as follows: 

𝐵(𝑁, 0) = (𝑎𝑉 − 𝑎𝐴)𝑁 +
3

5
𝑔

𝑁5 3⁄ 𝑀𝑛
2

𝑟0
 

Remark. Because 𝑎𝑉 < 𝑎𝐴 there are situations where𝐵(𝑁, 0) < 0, including in the 

hypothesis that N is very high and 𝑁 ≫ 𝑁2 3⁄ ; this is the most conveyable variant for 

an estimation. 

The critical value of the neutron star radius can be obtained when the following 

condition is satisfied:𝐵(𝑁, 0) = 0, namely:  

𝐵(𝑁, 0) = (𝑎𝑉 − 𝑎𝐴)𝑁𝑐𝑟 +
3

5
𝑔

𝑁𝑐𝑟
5 3⁄

𝑀𝑛
2

𝑟0
= 0, 

where Ncr is the neutron number for that the critical radius is obtained. 

1,5 p 

Solving the previous equation, the following results are obtained: 

(𝑎𝐴−𝑎𝑉)𝑁𝑐𝑟 =
3

5
𝑔

𝑁𝑐𝑟
5 3⁄

𝑟0
𝑀𝑛

2 , 

𝑁𝑐𝑟
2 3⁄ =

(𝑎𝐴 − 𝑎𝑉)𝑟0
3𝑔𝑀𝑛

2
 

The critical radius is𝑅𝑐𝑟 = 𝑟0𝑁𝑐𝑟
1 3⁄

. 

 Calculations give the following values:𝑅𝑐𝑟 ≅ 4345 𝑚, cu𝑁𝑐𝑟 ≅ 4.81𝑥1055. 

 

 

 

 

 



3 p 

2,5 p 

2,5 p 

VIII.  Elementary particles 

a) From Heisenberg relation  ∆𝐸 × ∆𝜏~ℏ  

If ∆𝐸 =  Γ, thus 

 

  𝜏 =
ℏ

Γ
=

ℏ𝑐

Γc
=

197 𝑀𝑒𝑉 𝑓𝑚

120𝑀𝑒𝑉 ×3×108
𝑚/𝑠

= 5.5 × 10−24𝑠 

 

Lorentz factor is 𝛾 =
𝐸

𝑚
=

𝐸∆

𝑚∆
=

(1.232+200)

1.232
≅ 163 

 

The distance traveled is: 𝑑 = 𝛽𝛾𝑐𝜏 ≅ 2.7 × 10−13𝑚 

 

b) From the conservation law of the electric charge, 𝑄𝑋 = +|𝑒|.  
Baryon number (𝐵∆ = +1) = 𝐵𝑋 + (𝐵𝜋 = 0) → 𝐵𝑋 = +1 

It is a strong decay; for ∆ and pion the lepton numbers are all zero.  Thus from the 

conservation of the lepton numbers result that for X particle the lepton number is 

zero. Similar arguments for strangeness. 

For isospin:  

(𝐼 ∆ =
3

2
; (𝐼∆)3 = +

3

2
) → (𝐼 𝑋; (𝐼𝑋)3)+(𝐼 𝜋 = 1; (𝐼𝜋)3 = +1) 

Using the rules for adding vector quantum numbers and their projections, → (𝐼 𝑋 =
1

2
; (𝐼𝑋)3 = +

1

2
) 

The X resonance is fermion. 

 At threshold, for the X particle (baryon) their mass must be bellow the value 1232-

140=1092 MeV/c2 . The single positive baryon, with zero strange number and with 

mass <1090 MeV/c2 is the proton. 

 

c) Inverse Lorentz transformations give: 

 

𝐸𝜋
∗ = 𝛾𝐸𝜋(1 − 𝛽𝑐𝑜𝑠𝜃) = 𝐸𝜋[𝛾 − (𝛾2 − 1)1/2𝑐𝑜𝑠𝜃]

≅ 𝐸𝜋 [𝛾 − 𝛾 (1 −
1

𝛾2
) (1 −

𝜃2

2
)] ≅ (

𝐸𝜋

2𝛾
) (1 + 𝛾2𝜃2) 

 

(where we have used the power development approximation and neglected terms in  
𝜃2

2𝛾
 for 𝛾 ≫ 1.) 

But 𝐸𝜋
∗ = (𝑚∆

2 − 𝑚𝑝
2)/2𝑚∆   and 𝐸∆ = 𝛾𝑚∆. 

 

d) As quark structure: ∆++→ (𝑢𝑢𝑢) , 𝑝 → (𝑢𝑢𝑑) , 𝜋+ → (𝑢𝑑̅)                                1 p 

 

 

 

 

 



 

 

 

IX. Rapdity and reference systems 

I.6. The particle  rapidity in the reference system S is: 𝑦 =
1

2
ln 

𝐸+𝑝𝐿

𝐸−𝑝𝐿
; let be β the 

relative velocity of the particle in reference system LS. The relationships for energy 

and longitudinal momentum, 𝐸 = 𝛾𝑚, 𝑝𝐿 = 𝛾𝛽𝑚, respectively, permit the writing of 

the  new relationship between rapidities, namely:  

𝑦 =
1

2
ln

𝛾𝑚+𝛾𝛽𝑚

𝛾𝑚−𝛾𝛽𝑚
=

1

2
ln

1+𝛽

1−𝛽
 (1) 3 p 

If the velocity of the particle, β, is small, then it is possible the following 

approximation:𝑦 ≅ 𝛽. 

When the particle moves with the relative velocity β on the direction z, parallel with 

the similar axis of the S’ system moving in rapport with the S, the following 

expression of the rapidity can be written: 

𝑦′ =
1

2
ln

𝐸′+𝑝′𝐿

𝐸′−𝑝′𝐿
. (2) 1 p 

The Lorentz transformations between the two reference systems are the following: 

𝐸′ = 𝛾(𝐸 − 𝛽𝑝𝑧) 

                                                              𝑝′𝑧 = 𝛾(𝑝𝑧 − 𝛽𝐸)       (3)                         2 p 

Introducing the expressions from equations (3) in equation (2), the next relationship is 

obtained:   

𝑦′ =
1

2
ln

𝛾(𝐸 − 𝛽𝑝𝐿) + 𝛾(𝑝𝐿 − 𝛽𝐸)

𝛾(𝐸 − 𝛽𝑝𝐿) − 𝛾(𝑝𝐿 − 𝛽𝐸)
=

1

2
ln

𝐸 − 𝛽𝑝𝐿 + 𝑝𝐿 − 𝛽𝐸

𝐸 − 𝛽𝑝𝐿 − 𝑝𝐿 + 𝛽𝐸
= 

=
1

2
ln

𝐸(1 − 𝛽) + 𝑝𝐿(1 − 𝛽)

𝐸(1 + 𝛽) − 𝑝𝐿(1 + 𝛽)
=

1

2
ln

(1 − 𝛽)(𝐸 + 𝑝𝐿)

(1 + 𝛽)(𝐸 − 𝑝𝐿)
=

1

2
ln

𝐸 + 𝑝𝐿

𝐸 − 𝑝𝐿
+

1

2
ln

1 − 𝛽

1 + 𝛽
= 

= 𝑦 −
1

2
ln

1 + 𝛽

1 − 𝛽
 

                                                                                                                                     2,5 p 

From the final relationship, 𝑦′ = 𝑦 −
1

2
ln

1+𝛽

1−𝛽
 , the final asked relationship is 

obtained, namely: 

𝑦′ = 𝑦 − 𝑦𝛽, with 𝑦𝛽 =
1

2
ln

1+𝛽

1−𝛽
              0,5 p 

(4) 



 

X. Langmuir 

1a) 𝜇(𝑇, 𝑃) = −𝑘𝐵𝑇 ln [
𝑘𝐵𝑇

𝑃
(
2𝜋𝑀

ℎ2
𝑘𝐵𝑇)

3 2⁄

] ,                                                        2 p 

 

1b) ⟨𝑁𝑎⟩(𝑇, 𝜇; 𝑁0) =
𝑁𝑎

1+(
ℎ𝜔

2𝜋𝑘𝐵𝑇
)
3

𝑒−𝜀 𝑘𝐵𝑇   ⁄ 𝑒−𝜇 𝑘𝐵𝑇⁄
                                             2 p 

 

1c)𝜃(𝑇, 𝑃) =
1

𝑃0(𝑇)

𝑃
+1

  ,        𝑃0(𝑇) ≡ (
𝑀𝜔2

2𝜋
)
3

2⁄

 
𝑒−𝜀 𝑘𝐵𝑇⁄

√𝑘𝐵𝑇
 ;                               1 p 

 

2a)𝜇𝑔(𝑇, 𝑉, 𝑁𝑔) = −𝑘𝐵𝑇 ln [
𝑉

𝑁𝑔
 (

2𝜋𝑀

ℎ2
𝑘𝐵𝑇)

3 2⁄

] 

 

        = −𝑘𝐵𝑇 ln [
𝑘𝐵𝑇

𝑃
(
2𝜋𝑀

ℎ2
𝑘𝐵𝑇)

3 2⁄

]   ,                                   0,5 p 

 

2b)   𝜇𝑎(𝑇,𝑁𝑎; 𝑁0) = −𝑘𝐵𝑇 ln [
𝑁0−𝑁𝑎

𝑁𝑎
 (

2𝜋

ℎ𝜔
𝑘𝐵𝑇)

3
𝑒𝜀 (𝑘𝐵𝑇)⁄ ]     ,                      2 p 

 

2c)  
1

𝜃
= 1 +

𝑘𝐵𝑇

𝑃
 (

2𝜋𝑀

ℎ2 𝑘𝐵𝑇)
3 2⁄

(
2𝜋

ℎ𝜔
𝑘𝐵𝑇)

 3
𝑒𝜀 (𝑘𝐵𝑇)⁄

   ⇒  𝜃 =
1

𝑃0(𝑇)

𝑃
+1

     ,                                               1 p 

 

2d) The previous expressions of the covering ratio are identical, because the statistical 

ensembles are equivalent at thermodynamic limit.                                                        0,5 p 


