
Problems Booklet
Dear participants,

The PLANCKS 2025 exam is finally in your hands!

Below we remind you some of the most important rules of the contest

• The language used in the competition is English.

• The contest consists of 9 problems. Problems 1-8 each are worth 10 points, problem 9 is worth 15 points.
Subdivisions of points are indicated in the problems.

• Each problem must be handed separately, i.e. no piece of paper should contain the resolution of more than
one problem. Please mark the header of each sheet with your team name, the problem number, and the problem
page number. It is necessary to mark each sheet so that it is scored.

• When a problem is unclear, a participant may request clarification through the invigilator. If the response is
relevant to all teams, the jury will provide this information to the other teams.

• Participants are allowed to use a dictionary: English to your native language.

• Participants are allowed to use a non-programmable, not-graph calculator (scientific is okay).

• No books or other sources, except for this Problem Booklet and a dictionary, are to be consulted during the
competition.

• The use of hardware (including phones, tablets etc.) is not approved, except for watches and medical equip-
ment. Please leave your phones in an envelope.

• Participants may not leave the exam room until one hour after the start of the competition. Afterwards, they
must obtain permission from the invigilator to use the restroom.

• The jury has the right to disqualify teams for misbehavior or breaking the rules.

• In situations to which no rule applies, the Organizing Committee decides.

We hope you enjoy solving these problems. Good luck and may the best team win!

The Academic and Organizing Committees of PLANCKS 2025
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1. Levitation in an Anti-Helmholtz coil

In some quantum magnetomechanical experiments a small magnetic particle is levitated in the magnetic field gener-
ated by two coaxial coils of the same radius R, separated by a distance R (from center to center). The same current,
I , circulates in the coils in opposite directions for each coil. This system is called an anti-Helmholtz coil (AHC). The
origin of the coordinates is located at the geometric center of the AHC system (see figure).

1. [5 points] Evaluate the magnetic induction field, Ba, (in Cartesian coordinates) created by the AHC at points
close to the origin, |r| ≪ R, up to the first non-vanishing order in the different coordinates of r.

2. Imagine a small sphere of radius a (a ≪ R) located at the origin of the coordinates. The sphere is made of
linear, homogeneous, and isotropic (l.h.i) magnetic material characterized by magnetic susceptibility χ. The
position of the sphere can be perturbed with small displacements, ε⃗ (|ε⃗| ≪ R). The sphere is small enough so
that the field inside it can be considered uniform with the value at its center and its magnetization distribution,
M, is also uniform. For the sphere, the demagnetizing field is Hd = −(1/3)M. Disregard gravity.

a. [2.5 points] Consider χ = −1. Calculate the magnetic force over the sphere, F, at the origin and study the
stability of the system after small displacements, in terms of the stiffness coefficients, καβ . The stiffness
coefficients are defined as

καβ ≡ − ∂Fα

∂β

∣∣∣∣
r=0

,

where α, β = (x, y, z).

b. [2.5 points] Consider χ = +1. Calculate the magnetic force over the sphere, F, at the origin and study the
stability of the system after small displacements, in terms of the stiffness coefficients, which are defined
as before.
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Solution

Consider the z axis as the coaxial axis of the system. The two coils of the AHC are located at z1,2 = ±R/2. The
induction field created by the AHC at any point of the z-axis is evaluated by the standard Biot-Savart law. The field
of the coil at z1 = −R/2 is

B1(r) =
µ0
4π

∫
c1

Idl1 × (r− r1)

|r− r1|3
, (1)

where µ0 is the vacuum permeability. In our case r1 = Rûρ − (R/2)ẑ, r = zẑ, dl1 = −IRdφ uφ. The only
dependence on φ appears in the unit vector ûρ, which, after the integral from 0 to 2π cancels. The induction field at a
point on the z-axis becomes:

B1(z) = −µ0I
4π

ẑ

∫ 2π

φ=0

R2[
R2 +

(
z + R

2

)2]3/2dφ = − µ0IR
2

2
[
R2 +

(
z + R

2

)2]3/2 ẑ. (2)

Exactly in the same way but considering that the second coil is located at z2 = R/2 and the dl2 = IRdφ ûφ, one
gets:

B2(z) =
µ0IR

2

2
[
R2 +

(
z − R

2

)2]3/2 ẑ. (3)

Close to the origin, the sum of these expressions can be expanded, using the Taylor expansion, up to the first non-
vanishing order in z. Thus, considering |z| ≪ R, and using (1 + ϵ)−3/2 ≃ 1− (3/2)ϵ for ϵ≪ 1, one gets

Ba(z) = B1(z) +B2(z) ≃ B0
2z

R
ẑ, (4)

where we have defined B0 ≡ 24µ0I/(25
√
5R), for convenience.

[+1 point]

This is the field along the z axis. It has only a z-component. However, we want to obtain all the components of the
induction field, evaluated at points r close to the origin (|r| ≪ R), but not necessarily on the axis. Using ∇×Ba = 0,

and since Ba,x, Ba,y, ∂Ba,x

∂z
and ∂Ba,y

∂z
are zero at the axis, the Ba,z component given in Eq. (4) is also valid, up to first

order in x and y, outside the axis because ∂Ba,z

∂x
=
∂Ba,z

∂y
= 0 . Moreover, the different components of the induction

field will not depend on the cross-coordinates. That is, Ba,x depends only on x and Ba,y only on y.
[+2 points]

Now, since ∇ ·Ba = 0, the induction field should satisfy:

∂Ba,x

∂x
+
∂Ba,y

∂y
+
∂Ba,z

∂z
= 0. (5)

Due to symmetry, ∂Bx

∂x
=
∂By

∂y
. Thus, Eq. (5) can be written as:

∂Bx

∂x
=
∂By

∂y
= −1

2

∂Bz

∂z
. (6)

With all this information and using Eqs. (4) and (6), the induction field components close to the origin are:

Ba,x = −B0
x

R
, (7)

Ba,y = −B0
y

R
, (8)

Ba,z = B0
2z

R
. (9)
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Note the factor 2 and the different sign in the z-component. Expressed in vectorial form1:

Ba(r) = B0

(
− x

R
x̂− y

R
ŷ +

2z

R
ẑ

)
= −B0

(
r− 3zẑ

R

)
. (10)

[+2 points]

If we place a small sphere of radius a close to the origin, this sphere will feel the applied field of the AHC.
The small sphere is characterized by a constant susceptibility χ. The sphere will magnetize. From the definition of
susceptibility and demagnetizing field, Hd, we can write:

M = χH = χ(Ha +Hd) = χ

(
Ha −

1

3
M

)
, (11)

where H is the magnetic field inside the sphere, Ha is the magnetic field created by the AHC (Ha = Ba/µ0). The
magnetization can be written in terms of the susceptibility and the applied induction field2:

M =
3χ

µ0(3 + χ)
Ba. (12)

As the sphere is assumed small (a ≪ R), its magnetization can be assumed uniform inside it. The applied field
considered is the one at the center of the sphere. Thus, the sphere can be considered as a small magnetic dipole whose
magnetic moment m equals m = VM, where V is the volume of the small sphere [V = (4/3)πa3].
[+2 points]

The magnetic force acting over a dipole, due to an externally applied field is known to be:

F = (m · ∇)Ba. (13)

In the present case, one has

F =

(
V

3χ

µ0(3 + χ)
Ba · ∇

)
Ba. (14)

Using the equations of the Ba [Eq. (10)], simple algebra allows us to evaluate the force and, from it and using the
definitions given, the stiffness coefficients (written in matrix form):

F =
4πa3

3µ0

(
3χ

3 + χ

)
B2

0

R

(
x

R
x̂+

y

R
ŷ +

4z

R
ẑ

)
, (15)

κ = −4πa3

3µ0

B2
0

R2

(
3χ

3 + χ

)1 0 0
0 1 0
0 0 4

 . (16)

Note that the factor 3χ
3+χ is equal to −3/2 and 3/4, for χ = −1 and χ = +1, respectively. Thus, for χ = −1 and

χ = +1, the forces are

Fχ=−1 =
4πa3

3µ0

(
−3

2

)
B2

0

R

(
x

R
x̂+

y

R
ŷ +

4z

R
ẑ

)
, (17)

Fχ=+1 =
4πa3

3µ0

(
3

4

)
B2

0

R

(
x

R
x̂+

y

R
ŷ +

4z

R
ẑ

)
. (18)

The force is zero when the sphere is exactly at the center of the AHC (when x = y = z = 0). This indicates that
the center of the AHC is an equilibrium position. However, after small perturbations, the forces are different from

1It is not necessary to know it, but this is the expression of a quadrupolar field.
2The problem can be solved directly by substituting the values of χ but we go on here using general expressions, to facilitate the final

interpretation of the results
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zero. To evaluate the stability of this equilibrium position, we evaluate the stiffness coefficients. A positive stiffness
will indicate a restoring force after a perturbation (stable equilibrium). For χ = −1 and χ = +1 one gets

κχ=−1 =
4πa3

3µ0

(
3

2

)
B2

0

R2

1 0 0
0 1 0
0 0 4

 , (19)

κχ=+1 = −4πa3

3µ0

(
3

4

)
B2

0

R2

1 0 0
0 1 0
0 0 4

 . (20)

[+1.5 points]

In the case χ = −1, all stiffness coefficients are positive, indicating that the sphere is stably levitating in the center
of the AHC as any perturbation will be counteracted with a restoring force. Note also that the stability is stronger
against perturbations along the z direction than in the x or y direction. When χ = +1, all the stiffness coefficients are
negative, indicating that the center of the AHC is an unstable equilibrium position for the sphere. In fact, it is unstable
against perturbations in any direction.
[+1.5 points]

To add some information, it is easily seen from Eq. (16) that the r = 0 equilibrium position is stable for χ < 0
spheres (diamagnetic spheres), whilst the system is unstable for χ > 0 ones (paramagnetic spheres). The case χ = −1
would correspond to a perfect diamagnetic sphere (a superconducting one in the Meissner state) with B = 0 inside it.
The case χ→ ∞ would correspond to an ideal soft ferromagnetic sphere where H = 0 in its interior. The case χ = 0
corresponds to a non-magnetic sphere (M = 0) and, obviously, it will feel no force coming from the AHC magnetic
induction field, independently of its position.

Dr. Nuria Del Valle, Prof. Carles Navau
Grup SIMMAS, Departament de Fı́sica, UAB
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2. Surface Adsorption

SURFACE

BULK

Gas adsorption on solid surfaces has a significant impact on the design of advanced materials for many appli-
cations. For instance, materials such as MOFs (Metal-Organic Frameworks) are actively studied to capture CO2 or
hydrogen, of great interest in environmental science and energy storage. In this problem, we will explore a simple
model of gas adsorption on a surface.

Let us consider a gas confined in a container and study the adsorption of particles at the walls. We will study the
process by neglecting the kinetic energy of the particles and using a discrete model for the locations of the particles
in the bulk and on the surface (see figure). Let NB be the number of possible spatial cells the particles may occupy in
the bulk and NS be the number of spatial cells on the surface. The gas consists of N particles and NB ≥ N ≥ NS .
Let n be the number of particles actually on the surface: 0 < n ≤ NS . A particle has an energy −ϵ (binding energy)
while it is on the surface and 0 while it is in the bulk. NB , NS and N are all constants and very large; n is a variable
and also large. The volume of a gas cell is V0.

1. [2 points] Using the microcanonical ensemble find the entropy as a function of n. Make use of the Stirling
approximation.

2. [2 points] Derive an expression relating n to the temperature of the system. Find the limit of n/N when T → ∞
and T = 0 reasoning your results.

3. [2 points] Derive the expression for n = n(T ) but now using the canonical ensemble. Compare your result
with that derived in question (2) and reason your results.

4. [2 points] Assume NB ≫ N ≫ NS . Find the explicit relation n = n(T ). For which temperature value a
surface cell is equally likely to be occupied or unoccupied?

5. [2 points] In the limit NB ≫ N ≫ NS , find the fraction of adsorbed particles θ ≡ n/NS in terms of the gas
pressure and plot θ vs p for a fixed temperature (this is named Langmuir isotherm). Find the pressure for which
half of the particles are adsorbed. Give a physical interpretation of the dependence of θ with p.
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Solution

1. Each microstate for the particles in the bulk is defined by the number of empty cells and occupied cells, ne and no
respectively. Since n is the actual number of particles on the surface, the number of microstates of the bulk ΩB is the
number of ways of placing N − n particles in MB bulk cells, with no = N − n and ne = NB − (N − n), so that

ΩB =
(no + ne)!

no!ne!
=

NB!

(N − n)!(NB −N + n)!
.

Analogously, for the particles in the surface, since no = n and ne = Ns − n, one finds

ΩS =
NS !

n!(Ns − n)!
.

The entropy follows from the Boltzmann formula S = kB lnΩ where Ω = ΩBΩS . Hence,

S ≃ kB

[
NB ln

(
NB

NB −N + n

)
+ (N − n) ln

(
NB −N + n

N − n

)
+NS ln

(
NS

NS − n

)
+ n ln

(
NS − n

n

)]
,

making use of the Stirling approximation.

2. The energy of the system is E = −nϵ and the temperature

1

T
=

(
∂S

∂E

)
N

=
∂S

∂n

∂n

∂E
= −1

ϵ

∂S

∂n
= −kB

ϵ
ln

[
(N − n)(NS − n)

n(NB −N + n)

]
so that

(N − n)(NS − n)

n(NB −N + n)
= e

− ϵ
kBT .

When T → ∞ one has e−
ϵ

kBT ≃ 1, so that (N − n)(NS − n) = n(NB −N + n) and finally

n

N
=

NS

NS +NB
.

In the high temperature limit the binding energy is negligible and the fractional occupation of surface cells is identical
to the fractional occupation of all the cells. As T → 0 one has e−

ϵ
kBT ≃ 0 and so n = NS , which corresponds to the

minimum energy of the system.

3. A possible way to obtain n(T ) using the canonical ensemble is to deal the bulk and the surface separately and
find the chemical potentials. Finally, n(T ) may be found when bulk and surface reach equilibrium, i.e., when both
chemical potentials are equal.

For the particles in the bulk, each microstate has energy 0 so that, denoting ng the number of particles in the gas,
the partition function is

ZB =
∑
s

e−βEs = ΩB =
NB!

ng!(NB − ng)!

while for the particle in the surface, since each microstate has energy −nϵ, one finds

ZS = ΩSe
βnϵ =

NS !

n!(Ns − n)!
eβnϵ.

The system is in equilibrium when the chemical potential of the particles in the bulk equals the chemical potential of
the particles in the surface. The chemical potential can be found from the partition function. Thus,

µB = kBT
∂ lnZB

∂ng
≃ kBT ln

(
NB − ng

ng

)
= kBT ln

(
NB −N + n

N − n

)
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with ng = N − n. Analogously,

µS = kBT
∂ lnZS

∂n
≃ ϵ+ kBT ln

(
NS − n

n

)
.

Finally, equating the chemical potentials one recovers the equation

(N − n)(NS − n)

n(NB −N + n)
= e

− ϵ
kBT .

This result is expected since this equation is also the state equation for the energy (recall that E = −nϵ) of the system
in terms of the energy and the state equations can be derived from any ensemble.

4. For NB ≫ N ≫ NS one can consider the approximations N − n ≃ N and NB −N + n ≃ NB . Then,

n

NS
≃ 1

NB
N e

− ϵ
kBT + 1

.

The occupation probability of the cells in the surface is the fraction of particles in the surface: n/NS . For this
probability to be 1/2, n/NS = 1/2 so that NB

N e
− ϵ

kBT ≃ 1. Finally,

T ≃ ϵ

kB ln(NB/N)
.

5. The gas pressure can be calculated using the expression for ZB above

p = −
(
∂F

∂V

)
ng ,T

=
kBT

V0

(
∂ lnZB

∂NB

)
ng ,T

= −kBT
V0

ln(1− ng/NB) ≃
NkT

V

where we have used Stirling approximation and that ng = N −n ≃ N in the limit NB ≫ N ≫ NS . This is the ideal
gas equation.

By substituting N = pV/kBT in the expression for n
NS

found in question 4 one obtains

θ =
n

NS
=

1
NBKBT

pV e
− ϵ

kBT + 1
=

p

p+ p0

with p0 = kBT
V0
e
− ϵ

kBT .

This is precisely the pressure for which the surface
is half covered. When p is small the amount of gas
particles is small and then few particles get absorbed
in the surface. As p is large enough (much larger
than p0), there are many particles in the gas, the flux
of gas particles onto the surface is large and most
surface sites are occupied.

Prof. Vicenç Méndez
Grup de Fı́sica Estadı́stica
Departament de Fı́sica, UAB
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3. Second sound

Heat transport in semiconductors is essential in many areas of nanotechnology. For instance, the rate at which heat
is evacuated in nanocircuits determines the actual limits for the speed of computation in what is called the “thermal
wall”. In bulk materials, heat transport is usually described by Fourier’s law, and it is said to be diffusive. Things
work differently when the system length or time scales are comparable to the mean free path or mean free times of
heat carriers. Here we will study the possibility of heat waves, what is known as second sound. It was first observed
in the 70’s at cryogenic temperatures for just a few materials, and recently in graphite and in germanium at larger
temperatures. To this end, we consider the so-called Maxwell-Cattaneo equation for the heat flux q

τ
∂q
∂t

+ q = −κ∇T, (1)

with T the temperature, κ the thermal conductivity and τ the heat flux relaxation time, which in semiconductors is an
average mean free time for phonon resistive scattering.

In what follows, assume the Maxwell-Cattaneo equation and that volume does not change.

Questions

1. [1 point] Show that in some limit one recovers Fourier’s law.

2. [2 points] Show that in some limit the temperature propagates as a wave, and that the speed of this wave is smaller
than (first) sound speed. Hint: consider that the thermal conductivity is κ = 1

3CV c
2τ , with CV the heat capacity

per unit volume and c the speed of sound; this expression can be obtained at low enough temperatures for three
dimensional materials assuming Debye model with identical branches.

One type of experiment to detect the wave-like behaviour of temperature is by instantaneously heating the surface
of the dielectric with a laser with a spatially periodic pulse of period L, providing an initial perturbation ∆T (x, 0) =
A cos(2πx/L) (see figure), and measure how the system relaxes to equilibrium (these are called thermal grating
experiments). Let us assume that heat flows only in the x axis.

3. [3 points] Find the evolution of the induced temperature difference ∆T (x, t) and the range of L for which one
could observe at least one temperature oscillation before reaching equilibrium.

4. [1 point] Discuss the possibility of finding that heat flows from cold to hot.

5. [3 points] Let us now analyze the compatibility of the Maxwell-Cattaneo equation (1) with the second law of
thermodynamics. Find the entropy production assuming local-equilibrium and discuss its sign. Do the same if
one assumes a non-equilibrium entropy density of the type

s(u,q) = seq(u)−
τ

2κT 2
q2,

where u is the energy density and seq the local-equilibrium entropy density.

Note: neglect terms higher than quadratic in the entropy production.
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Solution

1. If the time scale of the experiment is tp one can estimate the order of magnitude of the derivative of q in (1) as

τ
∂q
∂t

≈ τ

tp
q

Then, if the time scale of the experiment is much larger than τ , tp ≫ τ , one can neglect the derivative as compared
to the q term in (1) and recover Fourier’s law, q = −κ∇T .

2. In order to obtain an equation for the temperature, we must combine Eq. (1) with the equation for energy conser-
vation. Since volume is constant, du = CV dT , with CV the heat capacity per unit volume, and one has

CV
∂T

∂t
+∇ · q = 0, (2)

which yields

τ
∂2T

∂t2
+
∂T

∂t
=

κ

CV
∇2T. (3)

For perturbations much shorter than τ (or for frequencies ω >> τ−1), the term in the second time derivative is
much greater than the one in the first time derivative so that we are left to the wave equation.

The speed of this wave (second sound), with the help of κ = 1
3CV c

2τ , is

v2SS =
κ

CV τ
=
c2

3

Then vSS = c/
√
3 < c.

Historical note: Eq. (3) is the so-called Telegrapher’s equation, first derived by Heaviside to describe transmission
lines in 1876. Let us recall its technological and economic importance after the first transoceanic line. Heaviside,
who was a telegrapher, was who wrote Maxwell’s equations as we know them (and specified that they should be
called Maxwell’s equations), and applied them to obtain the Telegrapher’s equation (for voltage). Lord Kelvin also
made important contributions to the topic from a different perspective.

3. In order to find the evolution of the temperature difference ∆T (x, t) one solves Eq. (3) trying a solution of the
type

∆T (x, t) ∝ exp(iωt) cos(kx),

with k ≡ 2π/L, which supplies
τω2 − iω =

κ

CV
k2 ⇒

ω =
1

2τ

(
i±
√

4κτ

CV
k2 − 1

)
Then, if the term inside the square root is negative, ω is purely complex with positive imaginary parts, ω± = i|ω±|,
so that ∆T (x, t) decays exponentially, i.e. there is no oscillation. However, if the term inside the square root is
positive, ω has a real part, i.e. ω = ωr + i/2τ . Then the solution reads

∆T (x, t) = A exp(− t

2τ
) cos(ωrt) cos(2πx/L),

with ωr =
√

4κτ
CV

k2 − 1/2τ . This corresponds to a damped oscillation, i.e. a decaying standing wave. Accord-
ingly, oscillations could be seen provided that the period L is short enough.
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In order to observe an oscillation, this must occur before it has died out. Then, the period of the oscillation must
be shorter than the time scale of decay, which is 2τ (4τ would also be ok), i.e.

2π

ωr
< 2τ.

This yields

L <
2π√

1 + 4π2

√
κτ

CV
≃ vSS τ.

4. The Maxwell-Cattaneo equation (1) allows heat to flow from cold to hot if τ ∂q
∂t

is large enough and has the
appropriate sign. One situation where this becomes apparent is for the standing waves studied above. After half a
period, a cold region becomes hotter than its surroundings. Then, heat has flown from cold to hot.

Another way of proving that the heat flux in a wave is opposite to the thermal gradient at some instants is by
using the energy conservation equation (2). Let us consider the limit where one has a true wave equation (with no
damping). The wave solution is T, q ∝ exp i(kx− ωt), with k and ω real numbers. Eq. (2) supplies

CV ωT = kq

i.e. q is in phase with T , and then it is π/2 out of phase with ∇T . As a result, half of the time the heat flux is
opposite to the thermal gradient.

5. The second law of thermodynamics states that the entropy production σs ≥ 0. It can be obtained from the balance
equation for entropy

ds

dt
+∇ · Js = σs, (4)

with s the entropy per unit volume and Js = q/T the entropy flux.

i) Assuming the local-equilibrium hypothesis, the entropy density is that of equilibrium in a local version:

dseq = T−1du,

with u the internal energy density (let us recall that volume is constant). By using the energy conservation equation,
one has

σs = T−1du

dt
+∇ · q

T
= −T−1∇ · q +∇ · q

T
= −q · ∇T

T 2
.

For Fourier’s law, the latter expression can be written as

σs =
q2

κT 2
> 0,

but for Maxwell-Cattaneo reads

σs =
q2 + τ q · dq

dt

κT 2
,

which has no definite sign. Then it might violate the second law of thermodynamics.

ii) However, assuming a non-equilibrium entropy which depends on the equilibrium variable u and the nonequi-
librium variable q of the type

s(u,q) = seq(u)−
τ

2κT 2
q2

one has
ds = T−1du− τ

κT 2
q · dq,

and

σs = T−1du

dt
− τ

κT 2
q · dq

dt
+∇ · q

T
= − q

T 2
·
(
∇T +

τ

κ

dq
dt

)
,
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which for Maxwell-Cattaneo writes

σs =
q2

κT 2
> 0.

In summary, the Maxwell-Cattaneo equation (1) does not violate the second law of thermodynamics, but it requires
to introduce a nonequilibrium entropy beyond the local-equilibrium hypothesis.

As a final comment, thermal waves is an example of hydrodynamic transport, a hot topic of research which includes
thermal and electronic transport and exhibits other interesting phenomena.
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4. Some questions about our universe
——————————–

• Answer the questions in a clear, structured and concise manner, underlining the final result.
• Before starting to solve the problems, read the Formulae section on the next page, where you will find some useful
equations and definitions that you need.

——————————–

1.a. [1 point] Assume a component of the universe A having an equation of state relating pressure and energy density
of the form PA = wA ρA, with constant wA. Use the Friedmann eqs in the Formulae to show that the behaviour of
ρA with respect the scale factor a is of the form

ρA ∝ aπA

and calculate πA as a function of wA.

1.b. [1 point] The dependence of the energy density on a can be deduced from physical arguments in the case of
A = M,R,Λ. (i) For matter, ρM ∝ a−3 because of dilution due the expansion of the universe, (ii) for radiation,
ρR ∝ a−4 because in addition of dilution we have energy redshift, and (iii) for the cosmological constant, the
energy density ρΛ is constant (independent of a).

Use the facts (i), (ii) and (iii) and what you got in (a) to deduce the values of wM , wR, wΛ.

(FYI: The form of ρM(a), ρR(a), and ρΛ(a) allows to catch some properties of the evolution of the universe.)

2.a. [2 points] (a) From the Friedmann eqs shown in Formulae one can find an equation giving ä(t)

ä = aG (αρ+ βP )

(ρ = total energy density, P = total pressure). Calculate the value of the constants α and β.

2.b. [2 points] Define the deceleration parameter q0

q0 = − aä

ȧ2

∣∣∣∣
0

where a, ȧ and ä are taken at t = t0 (today’s time).

Calculate q0 as a function of ΩM , ΩR and ΩΛ (and nothing else).

(FYI: In our universe ΩΛ dominates, leading to q0 < 0, i.e. now the universe is accelerating)

3. Consider a flat universe (k = 0) with matter and cosmological constant (ρR = 0). The objective is to calculate
the age of such an universe t0.

a. [2 points] Show that t0 is given by an integral

t0 =

∫ α2

α1

da f(a,H0, ΩM , ΩΛ)

Find the values of integral limits α1 and α2. Find the function f .

b. [2 points] Solve the integral, and find t0 as a analytical function that depends only on H0 and on ΩΛ. (You
will need several substitutions, you might start with x = a3/2)

(FYI: With the observed values of H0 and ΩΛ we get the age of our universe, to a very good approximation.)

——————————–
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Formulae

We denote by a = a(t) the scale factor of the universe (we will normalize a(t0) = 1) and by H = H(t) = ȧ/a the
Hubble parameter (function of time t), and the Hubble constant byH0 = H(t0). The time t0 is today’s time. As usual
ȧ = da/dt and ä = d2a/dt2.

The total energy density of the universe is given by the sum of all contributions ρ =
∑

A
ρA and similarly for the

total pressure, P =
∑

A
PA. The first and second Friedmann equations are

1st eq: H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
2nd eq:

dρA

dt
= − 3H (ρA + PA)

(G = Newton’s const., k =curvature of the universe). Note that the 2nd eq is actually an equation for eachA. Summing
over A we get dρ/dt = − 3H (ρ+ P ).

We define the critical density ρc and the quantities ΩA

ρc =
3H2

0

8πG
, ΩA ≡ ρA(t0)

ρc

In the problem that we propose, we consider 3 (ideal) fluid components in the universe: matter (M ), radiation
(R), and cosmological constant (Λ). (M is non relativistic matter and R are photons or similar.) In these cases, the
relation between energy density and pressure (equation of state) is linear: PA = wA ρA, with wM = 0, wR = 1/3,
wΛ = −1. Finally, we have ΩM = ρM(t0)/ρc, and similarly for R and Λ.
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Solution

1.) (a) The 2n Friedmann eq (together with PA = wA ρA) gives
dρA

ρA

= −3(1 + wA)
da

a
=⇒ ρA ∝ a−3(1+wA)

Therefore πA = −3(1 + wA)

(b) Taking into account the information I give in (i), (ii), and (iii), clearly wM = 0, wR = 1/3, wΛ = −1

2.) (a) Take the time-derivative of 1st Friedmann eq and substitute dρ/dt = − 3H (ρ + P ) where ρ and P are the
total energy density and total pressure. Get

2ȧä/a2 − 2ȧ3/a3 = −8πG(ȧ/a)(ρ+ P ) + 2kȧ/a3

All terms have a factor H , simplify the expression and, finally, use again 1st Friedmann eq to get
ä

a
= − 4πG

3
(ρ+ 3P )

Therefore
α = − 4π/3. β = − 4π

(b)

q0 =
4πG

3H2
0

(ρ+ 3P )|0 =
1

2ρc
(ρ0 + 3P0) =

1

2

∑
(1 + 3wA)ΩA

Thus
q0 =

1

2
ΩM +ΩR −ΩΛ

3.) (a) From the definition of H(t)

dt =
1

H

da

a
For a flat universe with matter and cosmological constant we have k = 0 and the Friedmann eq can be written in
the form H = H0

√
ΩM/a3 +ΩΛ. Thus

t0 =
1

H0

∫ 1

0

da/a√
ΩM/a3 +ΩΛ

(b) The integral can be solved with different substitutions. For example∫
a1/2da√

ΩM +ΩΛa
3
=

∫
2

3

dx√
ΩM +ΩΛx

2
=

∫
2

3
√
ΩΛ

dy√
1 + y2

=

∫
2

3
√
ΩΛ

dz =
2

3
√
ΩΛ

z

where we use the substituions x = a3/2, y =
√
ΩΛ/ΩM x, z = sinh−1 y.

Final answer (we use ΩM +ΩΛ = 1 to eliminate ΩM as required)

t0 =
2

3H0

√
ΩΛ

sinh−1

(√
ΩΛ

1−ΩΛ

)

An alternative way to solve
∫
dy/
√

1 + y2 is with the substitution y = tan θ,∫
dy√
1 + y2

=

∫
dθ sec θ = ln | sec θ + tan θ| = ln |

√
1 + y2 + y|

Then we get

t0 =
2

3H0

√
ΩΛ

ln

(√
ΩΛ + 1√
1−ΩΛ

)
The two results for t0 are identical.

Prof. Eduard Massó
Grup de Fı́sica Teòrica
Departament de Fı́sica, UAB/IFAE
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5. Black Hole Shadow

We would like to observe the ”shadow” of a black hole with an earth-based telescope system. To do so, we consider a
Schwarzschild black hole around which matter orbits at radii ranging from the innermost stable circular orbit (ISCO)
until larger distances. That matter will emit light, which we want to picture with our telescopes. Note: In this exercise
we do not consider bending of light rays in the vicinity of the black hole.

1. In order to calculate the radius of the ISCO, we consider the effective potential energy given by General Relativity
(GR) for a test mass m, located at distance r from the black hole center and angular momentum L:

Veff(r) = −GmM
r

+
L2

2mr2
− Rs

2
· L2

mr3
, (1)

where G is the gravitational constant, M the mass of the black hole, Rs = 2GM/c2 the Schwarzschild radius
and c the light speed.

a. [1.5 points] Find the effective potential energy for Newton’s law of gravitation in terms of the angular
momentum and compare with the GR one. In which situations the GR effects will be relevant and in which
not?

From now on consider Eq. (1) and that L is a constant of motion.

b. [1 point] Find the orbits r = r(L) and show that there exists a minimum value of L.

c. [4 points] Find the range of possible orbits r, the range of r for stable solutions and the ISCO radius. Hint:
you may find helpful to plot L2 vs r, but it is not mandatory to reach the maximum mark.

2. A relatively close and active supermassive black hole in the vicinity of our Galaxy has a mass of approximately
5× 109M⊙ (where the solar mass M⊙ = 2× 1030 kg), and a distance of 16.7 Mpc (1 pc = 3.1× 1016 m).

a. [0.5 points] Calculate the angular extension of the ISCO radius of that supermassive black hole, if observed
from Earth.

b. [3 points] To picture that black hole, we need to design a system that reaches an angular resolution better
than the angular extension of the object derived in the previous section, in the best case at least twice as good.
The best angular resolutions can be achieved through interferometric observations, where the same incident
wave is detected by pairs of distant telescopes, and their signals get multiplied by each other to generate an
interference pattern (in the so-called correlator). The angular resolution is then approximately λ/D, where
λ denotes the wavelength of the observed light wave and the D the distance between a telescope pair. At
large distances, both telescopes can only register the signals, digitize them and correlate them later offline.
Technically, delay precisions between different stations of the order to ∼ 1 ps are feasible... (continued on
the next page)...
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The following picture shows the transparency of the terrestrial atmosphere to light at different wavelengths.
Can you choose a suitable observation wavelength for the interferometer and the required minimum distance
between two telescope pairs to achieve the angular resolutions found in question 2a?

Figure 1: Transparency of the Earth’s atmosphere. Note the inverted vertical scale. Credit: ESA/Hubble (F. Granato).

Constants: G = 6.7× 10−11m3 kg−1s−2; c = 3× 108m/s; Earth radius= 6378 km.
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Solution

1.) (a) Considering Newton’s law of gravitation, the mechanical energy of a test mass m in a circular orbit around
a star is the sum of potential and kinetic energy

−GmM
r

+
1

2
mv2 = −GmM

r
+

L2

2mr2
,

since in classical mechanics L = mrv. Comparing the latter expression with Eq. (1) one finds that GR
introduces a new term, the last one in the right-hand-side, which is an attractive term. Comparing the second
and third terms in (1) one finds that the latter can be neglected as compared to the second one when Rs ≪ r,
i.e. far away form the black hole, but it is relevant when r is comparable to Rs.

(b) We calculate the first derivative of the effective potential energy and set it to zero to find an extreme (con-
sidering constant L)

∂Veff(r)

∂r

!
= 0 =

GmM

r2
− L2

mr3
+

3Rs

2
· L2

mr4
(2)

The first equation has the following two solutions:

r =
L2 ±

√
L4 − 12L2G2M2m2/c2

2GMm2
. (3)

We note that for r to be a real number, the lowest possible angular moment is L =
√
12GMm/c =√

3mRsc. Notice that this contrasts to Newtonian mechanics, where there is no intrinsic minimum value of
L.

(c) In the previous question we have found two possible solutions for the orbits radii, one for each sign before
the square root. Since r+ is a growing function of L, it moves between r(Lmin) = 6GM/c2 = 3Rs to
infinity when L→ ∞. The interval corresponding to the r− solution is more involved to calculate but it can
be seen to range in the interval 1.5Rs < r < 3Rs. Then the range of orbit solutions of Eq. (1) is r > 1.5Rs.
To study the stability of the solutions one must verify that Veff is a minimum. To achieve this, one evaluates
the second derivative of Veff ,

∂2Veff(r)

∂r2
= −2GmM

r3
+

3L2

mr4
− 6Rs ·

L2

mr5
. (4)

Isolating GmM from Eq. (2) one finds

∂2Veff(r)

∂r2
=

L2

mr5
(r − 3Rs) ,

so that r− are unstable solutions and r+ are stable ones. Therefore the radius of the ISCO is rISCO = 3Rs.

An alternative way of answering these questions is expressing the orbits equation L2 as a function of r. Eq.
(2) yields

L2 = GMm2 r2

r − 3/2Rs
, (5)

which provides positive physical solutions for the range r > 3/2Rs. When r → 3/2Rs and when r → ∞
one has L→ ∞, so that there is a minimum in between (see fig. 2).
Differentiating Eq. (5)

dL2

dr
= GMm2 r2 − 3Rsr

(r − 3/2Rs)2
,

one finds the orbit for Lmin to be 3Rs, as found in (b).
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Figure 2: Plot of scaled L2 vs r, showing a minimum.

Again, for each value of L we find two solutions, one at each side of the minimum. To check the stability
one employs the second derivative, Eq. (4). Substituting L2 from (5) one finds

∂2Veff(r)

∂r2
=
GmM

r3
r − 3Rs

r − 3/2Rs
,

so that the solutions 3/2Rs < r < 3Rs are unstable and the solutions r > 3Rs are stable. Accordingly,

rISCO = 3Rs (6)

as found before.

2.) (a) First, we calculate the extension of the ISCO. Inserting the numbers into Eq. 6, we obtain rISCO = 4.5 ×
1013 m. The angular size θ of an object of the size of rISCO located at 16.7 × 106 pc from Earth is then (1
pc = 3.1× 1016m) :

θ = arctan
rISCO

DBH
≈ rISCO

DBH
= 8.6× 10−11 rad (7)

Note that the angular extension of the ISCO is actually twice that value.

(b) Delay precisions of the order ∆ = 1 ps lead to a limiting accuracy of the phase measurement of ∆ϕ/2π ≈
c·∆
λ . The chosen wavelength should hence be at least several times c∆ = 300µm, which excludes the

infrared part of the spectrum. The next suitable atmospheric transparency window lies at around 0.9 mm.
For this wavelength and the required angular resolution of, say, half the ISCO diameter, a baseline of D =
λ
θ = 1× 107 m is needed, about 80% of the Earth’s diameter. Possible solutions from 1 mm to 1.3 mm are
also allowed, but note that if the wavelength is taken larger than 1.4 mm, baselines longer than the Earth’s
diameter are required, and the answer is therefore not correct.
Finally, let us comment that these telescopes must be placed on mountains, the higher the better; in the case
of ALMA (Atacama Large Millimeter Array) they are located at more than 5000 m altitude), because the
opacity of the atmosphere is already quite important at wavelengths below 1 mm.

Prof. Markus Gaug
Unitat de Fı́sica de Radiacions, Departament de Fı́sica, UAB
and
Centre d’Estudis i Recerca Espacials, CERES (IEEC-UAB)



PLANCKS 2025 6. Pulling a chain upwards with constant force 19

6. Pulling a chain upwards with constant force

Consider pulling one end of a very long chain initially piled
up on a table with a constant force F , as illustrated in the
figure. At the start, a very short segment of length x0 is
held vertically at rest. The chain is subject to Earth’s grav-
itational attraction, with a constant acceleration g.
The chain consists of links that are infinitesimally small in
both length and mass, allowing it to be treated as a contin-
uous system with a uniform linear mass density λ. Neglect
the height and horizontal spread of the pile on the table.
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F

<latexit sha1_base64="81e8CWGMCzpBX0Sdd8yynrbhTKc=">AAAB6HicbZDLSsNAFIZPvNZ6q7p0EyyCq5KIVHcW3LhswV6gDWUyPWnHTiZhZiKW0Cdw40KRuvQtfA13vo2Ttgtt/WHg4//PYc45fsyZ0o7zba2srq1vbOa28ts7u3v7hYPDhooSSbFOIx7Jlk8Uciawrpnm2IolktDn2PSHN1nefECpWCTu9ChGLyR9wQJGiTZW7bFbKDolZyp7Gdw5FK8/J5neq93CV6cX0SREoSknSrVdJ9ZeSqRmlOM430kUxoQOSR/bBgUJUXnpdNCxfWqcnh1E0jyh7an7uyMloVKj0DeVIdEDtZhl5n9ZO9HBlZcyEScaBZ19FCTc1pGdbW33mESq+cgAoZKZWW06IJJQbW6TN0dwF1dehsZ5yS2XyjWnWLmAmXJwDCdwBi5cQgVuoQp1oIDwBC/wat1bz9abNZmVrljzniP4I+vjBwY/kYQ=</latexit>x

<latexit sha1_base64="ttAH2RnmON6SRUJny+2u81TjkYg=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVHcW3LisYB/QDiWTybShmUxIMkIZ+hFuBCvi1l/wN9z5N2baLrT1wIXDOedyH4HkTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWTVBHaJAlPVCfAmnImaNMww2lHKorjgNN2MLrN/fYjVZol4sGMJfVjPBAsYgQbK7V73EZD3C9X3Ko7A1ol3oJUbj5fckwb/fJXL0xIGlNhCMdadz1XGj/DyjDC6aTUSzWVmIzwgHYtFTim2s9m607QmVVCFCXKljBopv7uyHCs9TgObDLGZqiXvVz8z+umJrr2MyZkaqgg80FRypFJUH47CpmixPCxJZgoZndFZIgVJsZ+qGSf4C2fvEpaF1WvVq3du5X6JcxRhBM4hXPw4ArqcAcNaAKBETzBFF4d6Tw7b877PFpwFj3H8AfOxw9cvJQF</latexit>

�

<latexit sha1_base64="tu40fi32tZY5ijXiNAt6RRextNg=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGJLozIIjLBMwDkiH0dGqSNj0PunuEMOQL3LhQJC79C3/DnX9jT5KFJl5oONxbRVeVFwuutG1/Wyura+sbm7mt/PbO7t5+4eCwoaJEMqyzSESy5VGFgodY11wLbMUSaeAJbHrDmyxvPqJUPArv9ShGN6D9kPucUW2s2m23ULRL9lRkGZw5FK8/J5neq93CV6cXsSTAUDNBlWo7dqzdlErNmcBxvpMojCkb0j62DYY0QOWm00HH5NQ4PeJH0rxQk6n7uyOlgVKjwDOVAdUDtZhl5n9ZO9H+lZvyME40hmz2kZ8IoiOSbU16XCLTYmSAMsnNrIQNqKRMm9vkzRGcxZWXoXFecsqlcs0uVi5gphwcwwmcgQOXUIE7qEIdGCA8wQu8Wg/Ws/VmTWalK9a85wj+yPr4AbpokVI=</latexit>

F

<latexit sha1_base64="81e8CWGMCzpBX0Sdd8yynrbhTKc=">AAAB6HicbZDLSsNAFIZPvNZ6q7p0EyyCq5KIVHcW3LhswV6gDWUyPWnHTiZhZiKW0Cdw40KRuvQtfA13vo2Ttgtt/WHg4//PYc45fsyZ0o7zba2srq1vbOa28ts7u3v7hYPDhooSSbFOIx7Jlk8Uciawrpnm2IolktDn2PSHN1nefECpWCTu9ChGLyR9wQJGiTZW7bFbKDolZyp7Gdw5FK8/J5neq93CV6cX0SREoSknSrVdJ9ZeSqRmlOM430kUxoQOSR/bBgUJUXnpdNCxfWqcnh1E0jyh7an7uyMloVKj0DeVIdEDtZhl5n9ZO9HBlZcyEScaBZ19FCTc1pGdbW33mESq+cgAoZKZWW06IJJQbW6TN0dwF1dehsZ5yS2XyjWnWLmAmXJwDCdwBi5cQgVuoQp1oIDwBC/wat1bz9abNZmVrljzniP4I+vjBwY/kYQ=</latexit>x

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="5D8NPrL6VjkwrVgD8j761MD1RbA=">AAAB7XicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV6gHUomc6aNzSRDkhHK0Hdw46JF3PoMvoY738ZM24W2/hD4+P9zyDknSDjTxnW/nbX1jc2t7cJOcXdv/+CwdHTc1DJVFBpUcqnaAdHAmYCGYYZDO1FA4oBDKxje5XnrGZRmUjyaUQJ+TPqCRYwSY61mNwRuSK9UdivuTHgVvAWUbz8nuab1XumrG0qaxiAM5UTrjucmxs+IMoxyGBe7qYaE0CHpQ8eiIDFoP5tNO8bn1glxJJV9wuCZ+7sjI7HWoziwlTExA72c5eZ/WSc10Y2fMZGkBgSdfxSlHBuJ89VxyBRQw0cWCFXMzorpgChCjT1Q0R7BW155FZqXFa9aqT645doVmquATtEZukAeukY1dI/qqIEoekIvaIKmjnRenTfnfV665ix6TtAfOR8/sYOTpA==</latexit>

�

<latexit sha1_base64="tu40fi32tZY5ijXiNAt6RRextNg=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGJLozIIjLBMwDkiH0dGqSNj0PunuEMOQL3LhQJC79C3/DnX9jT5KFJl5oONxbRVeVFwuutG1/Wyura+sbm7mt/PbO7t5+4eCwoaJEMqyzSESy5VGFgodY11wLbMUSaeAJbHrDmyxvPqJUPArv9ShGN6D9kPucUW2s2m23ULRL9lRkGZw5FK8/J5neq93CV6cXsSTAUDNBlWo7dqzdlErNmcBxvpMojCkb0j62DYY0QOWm00HH5NQ4PeJH0rxQk6n7uyOlgVKjwDOVAdUDtZhl5n9ZO9H+lZvyME40hmz2kZ8IoiOSbU16XCLTYmSAMsnNrIQNqKRMm9vkzRGcxZWXoXFecsqlcs0uVi5gphwcwwmcgQOXUIE7qEIdGCA8wQu8Wg/Ws/VmTWalK9a85wj+yPr4AbpokVI=</latexit>

F

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="5D8NPrL6VjkwrVgD8j761MD1RbA=">AAAB7XicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV6gHUomc6aNzSRDkhHK0Hdw46JF3PoMvoY738ZM24W2/hD4+P9zyDknSDjTxnW/nbX1jc2t7cJOcXdv/+CwdHTc1DJVFBpUcqnaAdHAmYCGYYZDO1FA4oBDKxje5XnrGZRmUjyaUQJ+TPqCRYwSY61mNwRuSK9UdivuTHgVvAWUbz8nuab1XumrG0qaxiAM5UTrjucmxs+IMoxyGBe7qYaE0CHpQ8eiIDFoP5tNO8bn1glxJJV9wuCZ+7sjI7HWoziwlTExA72c5eZ/WSc10Y2fMZGkBgSdfxSlHBuJ89VxyBRQw0cWCFXMzorpgChCjT1Q0R7BW155FZqXFa9aqT645doVmquATtEZukAeukY1dI/qqIEoekIvaIKmjnRenTfnfV665ix6TtAfOR8/sYOTpA==</latexit>

�

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="IKxcs98P8Njr1xSb4gTxHTwI6eg=">AAAB6HicbZDLSsNAFIZP6q3WW9Wlm2ARXJVEpLqz4MZlC/YCbSiT6Uk7djIJMxOhhD6BGxeK1KVv4Wu4822ctF1o6w8DH/9/DnPO8WPOlHacbyu3tr6xuZXfLuzs7u0fFA+PmipKJMUGjXgk2z5RyJnAhmaaYzuWSEKfY8sf3WZ56xGlYpG41+MYvZAMBAsYJdpYddErlpyyM5O9Cu4CSjef00zvtV7xq9uPaBKi0JQTpTquE2svJVIzynFS6CYKY0JHZIAdg4KEqLx0NujEPjNO3w4iaZ7Q9sz93ZGSUKlx6JvKkOihWs4y87+sk+jg2kuZiBONgs4/ChJu68jOtrb7TCLVfGyAUMnMrDYdEkmoNrcpmCO4yyuvQvOi7FbKlbpTql7CXHk4gVM4BxeuoAp3UIMGUEB4ghd4tR6sZ+vNms5Lc9ai5xj+yPr4AfcIkXo=</latexit>n

<latexit sha1_base64="SEyzgs5e3oo67EBFwPUSxOKAVko=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAsoTZyWwyZHZmmZkNhCWf4MWDIl7Fv/APPHnzb5w8DppY0FBUddPdFcScaeO6305mbX1jcyu7ndvZ3ds/yB8WGlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8GrqN0dUaSbFvRnH1I9wX7CQEWysdDfqim6+5JbdGdAq8RakVM1+fhSu34u1bv6r05MkiagwhGOt254bGz/FyjDC6STXSTSNMRniPm1bKnBEtZ/OTp2gE6v0UCiVLWHQTP09keJI63EU2M4Im4Fe9qbif147MeGlnzIRJ4YKMl8UJhwZiaZ/ox5TlBg+tgQTxeytiAywwsTYdHI2BG/55VXSOCt7lXLl1qZxDnNk4RiKcAoeXEAVbqAGdSDQhwd4gmeHO4/Oi/M6b804i5kj+APn7QdWD5DD</latexit>vn

<latexit sha1_base64="SEyzgs5e3oo67EBFwPUSxOKAVko=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAsoTZyWwyZHZmmZkNhCWf4MWDIl7Fv/APPHnzb5w8DppY0FBUddPdFcScaeO6305mbX1jcyu7ndvZ3ds/yB8WGlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8GrqN0dUaSbFvRnH1I9wX7CQEWysdDfqim6+5JbdGdAq8RakVM1+fhSu34u1bv6r05MkiagwhGOt254bGz/FyjDC6STXSTSNMRniPm1bKnBEtZ/OTp2gE6v0UCiVLWHQTP09keJI63EU2M4Im4Fe9qbif147MeGlnzIRJ4YKMl8UJhwZiaZ/ox5TlBg+tgQTxeytiAywwsTYdHI2BG/55VXSOCt7lXLl1qZxDnNk4RiKcAoeXEAVbqAGdSDQhwd4gmeHO4/Oi/M6b804i5kj+APn7QdWD5DD</latexit>vn

<latexit sha1_base64="iIGQHYfmVS7azOuEAekdaMUuDPo=">AAAB6nicbZDLSgMxFIbP1Futt6pLN8EiuCoZkepGLLhxWdFeoB1KJs20oZnMkGQKZegjuHGhVLe+hK/hzrcx03ah1R8CH/9/Djnn+LHg2mD85eRWVtfWN/Kbha3tnd294v5BQ0eJoqxOIxGplk80E1yyuuFGsFasGAl9wZr+8CbLmyOmNI/kgxnHzAtJX/KAU2KsdT+6wt1iCZfxTOgvuAsoXX9MM73WusXPTi+iScikoYJo3XZxbLyUKMOpYJNCJ9EsJnRI+qxtUZKQaS+djTpBJ9bpoSBS9kmDZu7PjpSEWo9D31aGxAz0cpaZ/2XtxASXXsplnBgm6fyjIBHIRCjbG/W4YtSIsQVCFbezIjogilBjr1OwR3CXV/4LjbOyWylX7nCpeg5z5eEIjuEUXLiAKtxCDepAoQ+P8AwvjnCenKnzNi/NOYueQ/gl5/0b816SAw==</latexit>

v = 0

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="5D8NPrL6VjkwrVgD8j761MD1RbA=">AAAB7XicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV6gHUomc6aNzSRDkhHK0Hdw46JF3PoMvoY738ZM24W2/hD4+P9zyDknSDjTxnW/nbX1jc2t7cJOcXdv/+CwdHTc1DJVFBpUcqnaAdHAmYCGYYZDO1FA4oBDKxje5XnrGZRmUjyaUQJ+TPqCRYwSY61mNwRuSK9UdivuTHgVvAWUbz8nuab1XumrG0qaxiAM5UTrjucmxs+IMoxyGBe7qYaE0CHpQ8eiIDFoP5tNO8bn1glxJJV9wuCZ+7sjI7HWoziwlTExA72c5eZ/WSc10Y2fMZGkBgSdfxSlHBuJ89VxyBRQw0cWCFXMzorpgChCjT1Q0R7BW155FZqXFa9aqT645doVmquATtEZukAeukY1dI/qqIEoekIvaIKmjnRenTfnfV665ix6TtAfOR8/sYOTpA==</latexit>

�

<latexit sha1_base64="tu40fi32tZY5ijXiNAt6RRextNg=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGJLozIIjLBMwDkiH0dGqSNj0PunuEMOQL3LhQJC79C3/DnX9jT5KFJl5oONxbRVeVFwuutG1/Wyura+sbm7mt/PbO7t5+4eCwoaJEMqyzSESy5VGFgodY11wLbMUSaeAJbHrDmyxvPqJUPArv9ShGN6D9kPucUW2s2m23ULRL9lRkGZw5FK8/J5neq93CV6cXsSTAUDNBlWo7dqzdlErNmcBxvpMojCkb0j62DYY0QOWm00HH5NQ4PeJH0rxQk6n7uyOlgVKjwDOVAdUDtZhl5n9ZO9H+lZvyME40hmz2kZ8IoiOSbU16XCLTYmSAMsnNrIQNqKRMm9vkzRGcxZWXoXFecsqlcs0uVi5gphwcwwmcgQOXUIE7qEIdGCA8wQu8Wg/Ws/VmTWalK9a85wj+yPr4AbpokVI=</latexit>

F

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="IKxcs98P8Njr1xSb4gTxHTwI6eg=">AAAB6HicbZDLSsNAFIZP6q3WW9Wlm2ARXJVEpLqz4MZlC/YCbSiT6Uk7djIJMxOhhD6BGxeK1KVv4Wu4822ctF1o6w8DH/9/DnPO8WPOlHacbyu3tr6xuZXfLuzs7u0fFA+PmipKJMUGjXgk2z5RyJnAhmaaYzuWSEKfY8sf3WZ56xGlYpG41+MYvZAMBAsYJdpYddErlpyyM5O9Cu4CSjef00zvtV7xq9uPaBKi0JQTpTquE2svJVIzynFS6CYKY0JHZIAdg4KEqLx0NujEPjNO3w4iaZ7Q9sz93ZGSUKlx6JvKkOihWs4y87+sk+jg2kuZiBONgs4/ChJu68jOtrb7TCLVfGyAUMnMrDYdEkmoNrcpmCO4yyuvQvOi7FbKlbpTql7CXHk4gVM4BxeuoAp3UIMGUEB4ghd4tR6sZ+vNms5Lc9ai5xj+yPr4AfcIkXo=</latexit>n

<latexit sha1_base64="SEyzgs5e3oo67EBFwPUSxOKAVko=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAsoTZyWwyZHZmmZkNhCWf4MWDIl7Fv/APPHnzb5w8DppY0FBUddPdFcScaeO6305mbX1jcyu7ndvZ3ds/yB8WGlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8GrqN0dUaSbFvRnH1I9wX7CQEWysdDfqim6+5JbdGdAq8RakVM1+fhSu34u1bv6r05MkiagwhGOt254bGz/FyjDC6STXSTSNMRniPm1bKnBEtZ/OTp2gE6v0UCiVLWHQTP09keJI63EU2M4Im4Fe9qbif147MeGlnzIRJ4YKMl8UJhwZiaZ/ox5TlBg+tgQTxeytiAywwsTYdHI2BG/55VXSOCt7lXLl1qZxDnNk4RiKcAoeXEAVbqAGdSDQhwd4gmeHO4/Oi/M6b804i5kj+APn7QdWD5DD</latexit>vn

<latexit sha1_base64="SEyzgs5e3oo67EBFwPUSxOKAVko=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAsoTZyWwyZHZmmZkNhCWf4MWDIl7Fv/APPHnzb5w8DppY0FBUddPdFcScaeO6305mbX1jcyu7ndvZ3ds/yB8WGlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8GrqN0dUaSbFvRnH1I9wX7CQEWysdDfqim6+5JbdGdAq8RakVM1+fhSu34u1bv6r05MkiagwhGOt254bGz/FyjDC6STXSTSNMRniPm1bKnBEtZ/OTp2gE6v0UCiVLWHQTP09keJI63EU2M4Im4Fe9qbif147MeGlnzIRJ4YKMl8UJhwZiaZ/ox5TlBg+tgQTxeytiAywwsTYdHI2BG/55VXSOCt7lXLl1qZxDnNk4RiKcAoeXEAVbqAGdSDQhwd4gmeHO4/Oi/M6b804i5kj+APn7QdWD5DD</latexit>vn

<latexit sha1_base64="iIGQHYfmVS7azOuEAekdaMUuDPo=">AAAB6nicbZDLSgMxFIbP1Futt6pLN8EiuCoZkepGLLhxWdFeoB1KJs20oZnMkGQKZegjuHGhVLe+hK/hzrcx03ah1R8CH/9/Djnn+LHg2mD85eRWVtfWN/Kbha3tnd294v5BQ0eJoqxOIxGplk80E1yyuuFGsFasGAl9wZr+8CbLmyOmNI/kgxnHzAtJX/KAU2KsdT+6wt1iCZfxTOgvuAsoXX9MM73WusXPTi+iScikoYJo3XZxbLyUKMOpYJNCJ9EsJnRI+qxtUZKQaS+djTpBJ9bpoSBS9kmDZu7PjpSEWo9D31aGxAz0cpaZ/2XtxASXXsplnBgm6fyjIBHIRCjbG/W4YtSIsQVCFbezIjogilBjr1OwR3CXV/4LjbOyWylX7nCpeg5z5eEIjuEUXLiAKtxCDepAoQ+P8AwvjnCenKnzNi/NOYueQ/gl5/0b816SAw==</latexit>

v = 0

<latexit sha1_base64="/nq4UiAi2szYyV7W/T4A0vRKb7I=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAXMLsZJIMmZ1dZnqFsOQTvHhQxKv4F/6BJ2/+jZPHQRMLGoqqbrq7glgKg6777WRWVtfWN7Kbua3tnd29/H6hYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMYXkz85j3XRkTqFkcx90PaV6InGEUr3WBHdfIlt+xOQZaJNyelavbzo3D5Xqx18l933YglIVfIJDWm7bkx+inVKJjk49xdYnhM2ZD2edtSRUNu/HR66pgcWaVLepG2pZBM1d8TKQ2NGYWB7QwpDsyiNxH/89oJ9s79VKg4Qa7YbFEvkQQjMvmbdIXmDOXIEsq0sLcSNqCaMrTp5GwI3uLLy6RxUvYq5cq1TeMUZsjCIRThGDw4gypcQQ3qwKAPD/AEz450Hp0X53XWmnHmMwfwB87bD1MDkME=</latexit>

tn

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="5D8NPrL6VjkwrVgD8j761MD1RbA=">AAAB7XicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV6gHUomc6aNzSRDkhHK0Hdw46JF3PoMvoY738ZM24W2/hD4+P9zyDknSDjTxnW/nbX1jc2t7cJOcXdv/+CwdHTc1DJVFBpUcqnaAdHAmYCGYYZDO1FA4oBDKxje5XnrGZRmUjyaUQJ+TPqCRYwSY61mNwRuSK9UdivuTHgVvAWUbz8nuab1XumrG0qaxiAM5UTrjucmxs+IMoxyGBe7qYaE0CHpQ8eiIDFoP5tNO8bn1glxJJV9wuCZ+7sjI7HWoziwlTExA72c5eZ/WSc10Y2fMZGkBgSdfxSlHBuJ89VxyBRQw0cWCFXMzorpgChCjT1Q0R7BW155FZqXFa9aqT645doVmquATtEZukAeukY1dI/qqIEoekIvaIKmjnRenTfnfV665ix6TtAfOR8/sYOTpA==</latexit>

�

<latexit sha1_base64="tu40fi32tZY5ijXiNAt6RRextNg=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGJLozIIjLBMwDkiH0dGqSNj0PunuEMOQL3LhQJC79C3/DnX9jT5KFJl5oONxbRVeVFwuutG1/Wyura+sbm7mt/PbO7t5+4eCwoaJEMqyzSESy5VGFgodY11wLbMUSaeAJbHrDmyxvPqJUPArv9ShGN6D9kPucUW2s2m23ULRL9lRkGZw5FK8/J5neq93CV6cXsSTAUDNBlWo7dqzdlErNmcBxvpMojCkb0j62DYY0QOWm00HH5NQ4PeJH0rxQk6n7uyOlgVKjwDOVAdUDtZhl5n9ZO9H+lZvyME40hmz2kZ8IoiOSbU16XCLTYmSAMsnNrIQNqKRMm9vkzRGcxZWXoXFecsqlcs0uVi5gphwcwwmcgQOXUIE7qEIdGCA8wQu8Wg/Ws/VmTWalK9a85wj+yPr4AbpokVI=</latexit>

F

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="IKxcs98P8Njr1xSb4gTxHTwI6eg=">AAAB6HicbZDLSsNAFIZP6q3WW9Wlm2ARXJVEpLqz4MZlC/YCbSiT6Uk7djIJMxOhhD6BGxeK1KVv4Wu4822ctF1o6w8DH/9/DnPO8WPOlHacbyu3tr6xuZXfLuzs7u0fFA+PmipKJMUGjXgk2z5RyJnAhmaaYzuWSEKfY8sf3WZ56xGlYpG41+MYvZAMBAsYJdpYddErlpyyM5O9Cu4CSjef00zvtV7xq9uPaBKi0JQTpTquE2svJVIzynFS6CYKY0JHZIAdg4KEqLx0NujEPjNO3w4iaZ7Q9sz93ZGSUKlx6JvKkOihWs4y87+sk+jg2kuZiBONgs4/ChJu68jOtrb7TCLVfGyAUMnMrDYdEkmoNrcpmCO4yyuvQvOi7FbKlbpTql7CXHk4gVM4BxeuoAp3UIMGUEB4ghd4tR6sZ+vNms5Lc9ai5xj+yPr4AfcIkXo=</latexit>n

<latexit sha1_base64="SEyzgs5e3oo67EBFwPUSxOKAVko=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAsoTZyWwyZHZmmZkNhCWf4MWDIl7Fv/APPHnzb5w8DppY0FBUddPdFcScaeO6305mbX1jcyu7ndvZ3ds/yB8WGlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8GrqN0dUaSbFvRnH1I9wX7CQEWysdDfqim6+5JbdGdAq8RakVM1+fhSu34u1bv6r05MkiagwhGOt254bGz/FyjDC6STXSTSNMRniPm1bKnBEtZ/OTp2gE6v0UCiVLWHQTP09keJI63EU2M4Im4Fe9qbif147MeGlnzIRJ4YKMl8UJhwZiaZ/ox5TlBg+tgQTxeytiAywwsTYdHI2BG/55VXSOCt7lXLl1qZxDnNk4RiKcAoeXEAVbqAGdSDQhwd4gmeHO4/Oi/M6b804i5kj+APn7QdWD5DD</latexit>vn

<latexit sha1_base64="SEyzgs5e3oo67EBFwPUSxOKAVko=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAsoTZyWwyZHZmmZkNhCWf4MWDIl7Fv/APPHnzb5w8DppY0FBUddPdFcScaeO6305mbX1jcyu7ndvZ3ds/yB8WGlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8GrqN0dUaSbFvRnH1I9wX7CQEWysdDfqim6+5JbdGdAq8RakVM1+fhSu34u1bv6r05MkiagwhGOt254bGz/FyjDC6STXSTSNMRniPm1bKnBEtZ/OTp2gE6v0UCiVLWHQTP09keJI63EU2M4Im4Fe9qbif147MeGlnzIRJ4YKMl8UJhwZiaZ/ox5TlBg+tgQTxeytiAywwsTYdHI2BG/55VXSOCt7lXLl1qZxDnNk4RiKcAoeXEAVbqAGdSDQhwd4gmeHO4/Oi/M6b804i5kj+APn7QdWD5DD</latexit>vn

<latexit sha1_base64="/nq4UiAi2szYyV7W/T4A0vRKb7I=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAXMLsZJIMmZ1dZnqFsOQTvHhQxKv4F/6BJ2/+jZPHQRMLGoqqbrq7glgKg6777WRWVtfWN7Kbua3tnd29/H6hYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMYXkz85j3XRkTqFkcx90PaV6InGEUr3WBHdfIlt+xOQZaJNyelavbzo3D5Xqx18l933YglIVfIJDWm7bkx+inVKJjk49xdYnhM2ZD2edtSRUNu/HR66pgcWaVLepG2pZBM1d8TKQ2NGYWB7QwpDsyiNxH/89oJ9s79VKg4Qa7YbFEvkQQjMvmbdIXmDOXIEsq0sLcSNqCaMrTp5GwI3uLLy6RxUvYq5cq1TeMUZsjCIRThGDw4gypcQQ3qwKAPD/AEz450Hp0X53XWmnHmMwfwB87bD1MDkME=</latexit>

tn<latexit sha1_base64="5D8NPrL6VjkwrVgD8j761MD1RbA=">AAAB7XicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV6gHUomc6aNzSRDkhHK0Hdw46JF3PoMvoY738ZM24W2/hD4+P9zyDknSDjTxnW/nbX1jc2t7cJOcXdv/+CwdHTc1DJVFBpUcqnaAdHAmYCGYYZDO1FA4oBDKxje5XnrGZRmUjyaUQJ+TPqCRYwSY61mNwRuSK9UdivuTHgVvAWUbz8nuab1XumrG0qaxiAM5UTrjucmxs+IMoxyGBe7qYaE0CHpQ8eiIDFoP5tNO8bn1glxJJV9wuCZ+7sjI7HWoziwlTExA72c5eZ/WSc10Y2fMZGkBgSdfxSlHBuJ89VxyBRQw0cWCFXMzorpgChCjT1Q0R7BW155FZqXFa9aqT645doVmquATtEZukAeukY1dI/qqIEoekIvaIKmjnRenTfnfV665ix6TtAfOR8/sYOTpA==</latexit>

�

<latexit sha1_base64="SEyzgs5e3oo67EBFwPUSxOKAVko=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7ArEj0G9OAxonlAsoTZyWwyZHZmmZkNhCWf4MWDIl7Fv/APPHnzb5w8DppY0FBUddPdFcScaeO6305mbX1jcyu7ndvZ3ds/yB8WGlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8GrqN0dUaSbFvRnH1I9wX7CQEWysdDfqim6+5JbdGdAq8RakVM1+fhSu34u1bv6r05MkiagwhGOt254bGz/FyjDC6STXSTSNMRniPm1bKnBEtZ/OTp2gE6v0UCiVLWHQTP09keJI63EU2M4Im4Fe9qbif147MeGlnzIRJ4YKMl8UJhwZiaZ/ox5TlBg+tgQTxeytiAywwsTYdHI2BG/55VXSOCt7lXLl1qZxDnNk4RiKcAoeXEAVbqAGdSDQhwd4gmeHO4/Oi/M6b804i5kj+APn7QdWD5DD</latexit>vn
<latexit sha1_base64="DNCt7zMilTEFZzHwHZwoq6mHsEg=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuCozItWdBTcuW7AXaIeSSTNtbJIZkoxQhj6BGxeK1KVv4Wu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DbLW49UaRbJezOOqS/wQLKQEWysVRe9YsktuzOhVfAWULr5nGZ6r/WKX91+RBJBpSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox6LEgmo/nQ06QWfW6aMwUvZJg2bu744UC63HIrCVApuhXs4y87+sk5jw2k+ZjBNDJZl/FCYcmQhlW6M+U5QYPraAiWJ2VkSGWGFi7G0K9gje8sqr0Lwoe5Vype6WqpcwVx5O4BTOwYMrqMId1KABBCg8wQu8Og/Os/PmTOelOWfRcwx/5Hz8APWEkXk=</latexit>m

<latexit sha1_base64="ttAH2RnmON6SRUJny+2u81TjkYg=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVHcW3LisYB/QDiWTybShmUxIMkIZ+hFuBCvi1l/wN9z5N2baLrT1wIXDOedyH4HkTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWTVBHaJAlPVCfAmnImaNMww2lHKorjgNN2MLrN/fYjVZol4sGMJfVjPBAsYgQbK7V73EZD3C9X3Ko7A1ol3oJUbj5fckwb/fJXL0xIGlNhCMdadz1XGj/DyjDC6aTUSzWVmIzwgHYtFTim2s9m607QmVVCFCXKljBopv7uyHCs9TgObDLGZqiXvVz8z+umJrr2MyZkaqgg80FRypFJUH47CpmixPCxJZgoZndFZIgVJsZ+qGSf4C2fvEpaF1WvVq3du5X6JcxRhBM4hXPw4ArqcAcNaAKBETzBFF4d6Tw7b877PFpwFj3H8AfOxw9cvJQF</latexit>

�

<latexit sha1_base64="tu40fi32tZY5ijXiNAt6RRextNg=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGJLozIIjLBMwDkiH0dGqSNj0PunuEMOQL3LhQJC79C3/DnX9jT5KFJl5oONxbRVeVFwuutG1/Wyura+sbm7mt/PbO7t5+4eCwoaJEMqyzSESy5VGFgodY11wLbMUSaeAJbHrDmyxvPqJUPArv9ShGN6D9kPucUW2s2m23ULRL9lRkGZw5FK8/J5neq93CV6cXsSTAUDNBlWo7dqzdlErNmcBxvpMojCkb0j62DYY0QOWm00HH5NQ4PeJH0rxQk6n7uyOlgVKjwDOVAdUDtZhl5n9ZO9H+lZvyME40hmz2kZ8IoiOSbU16XCLTYmSAMsnNrIQNqKRMm9vkzRGcxZWXoXFecsqlcs0uVi5gphwcwwmcgQOXUIE7qEIdGCA8wQu8Wg/Ws/VmTWalK9a85wj+yPr4AbpokVI=</latexit>

F

<latexit sha1_base64="81e8CWGMCzpBX0Sdd8yynrbhTKc=">AAAB6HicbZDLSsNAFIZPvNZ6q7p0EyyCq5KIVHcW3LhswV6gDWUyPWnHTiZhZiKW0Cdw40KRuvQtfA13vo2Ttgtt/WHg4//PYc45fsyZ0o7zba2srq1vbOa28ts7u3v7hYPDhooSSbFOIx7Jlk8Uciawrpnm2IolktDn2PSHN1nefECpWCTu9ChGLyR9wQJGiTZW7bFbKDolZyp7Gdw5FK8/J5neq93CV6cX0SREoSknSrVdJ9ZeSqRmlOM430kUxoQOSR/bBgUJUXnpdNCxfWqcnh1E0jyh7an7uyMloVKj0DeVIdEDtZhl5n9ZO9HBlZcyEScaBZ19FCTc1pGdbW33mESq+cgAoZKZWW06IJJQbW6TN0dwF1dehsZ5yS2XyjWnWLmAmXJwDCdwBi5cQgVuoQp1oIDwBC/wat1bz9abNZmVrljzniP4I+vjBwY/kYQ=</latexit>x

1. [3 points] Derive the ordinary differential equation for the velocity v of the rising segment of a chain as a
function of its height x (1 point), and solve it to obtain the expression (2 points)

v =

√
F

λ

(
1− x20

x2

)
− 2

3
gx0

(
x

x0
− x20
x2

)
Hint: You may need an integrating factor µ(x) to solve the equation.

2. [1 point] Determine the maximum height xmax of the chain that can be reached with the applied force.

3. [1 point] Explain why xmax exceeds the equilibrium height xeq = F/(λg), where the force F balances the
chain’s weight.

In the remaining sections, assume that the initial height x0, where pulling begins, is much smaller than the equilibrium
height, i.e., x0 ≪ xeq.

4. [1 point] Determine x(t) for timescales much larger than x0
√
λ/F and up to the moment when the end of the

chain reaches its maximum height.

5. [2 points] Obtain the velocity of the descending segment of the chain as a function of x after the chain has
reached its maximum height xmax.

6. [1 point] Calculate the minimum height, xmin, that the vertical segment of the chain will reach during its
descent.

Hint: The equation
3

2
− ξ + log

(
2ξ

3

)
= 0

has two solutions, ξ0 = 3/2 and ξ1 ≈ 0.625.

7. [1 point] Sketch an approximate graph of x(t) for a time interval that includes several cycles as described in
the previous questions.
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Solution

1.) Consider the variable-mass system consisting of the segment of the chain that is not in contact with the ground.
In this case, Newton’s second law/general mass accretion formula is expressed as:

F − (λx)g =
d

dt
[(λx)ẋ] ,

where λx represents the mass of the system. Expanding this equation gives:

F − λgx = λẋ2 + λxẍ.

Next, we use the well known relation ẍ = vdv/dx = (1/2)d(v2)/dx, where v = ẋ. Substituting this into the
previous equation, we obtain:

2
F

λ
− 2gx = 2v2 + x

dv2

dx
.

The integrating factor for this ODE is x, which allows us to rewrite the equation as:

2x
F

λ
− 2gx2 = 2xv2 + x2

dv2

dx
=

d

dx

(
x2v2

)
.

Now, integrating both sides with respect to x, we find:

F

λ
(x2 − x20)−

2

3
g(x3 − x30) = x2v2.

Finally, solving for v, we get:

v =

√
F

λ

(
1− x20

x2

)
− 2

3
gx0

(
x

x0
− x20
x2

)
(1)

2.) To find xmax, we set v2 = 0. To simplify the derivation, we introduce the dimensionless variable ζ := xmax/x0:

0 =
F

λ

(
ζ2 − 1

)
− 2

3
gx0

(
ζ3 − 1

)
= (ζ − 1)

[
F

λ
(ζ + 1)− 2

3
gx0

(
ζ2 + ζ + 1

)]
.

This equation simplifies to

2

3
gx0ζ

2 +

(
2

3
gx0 −

F

λ

)
ζ +

(
2

3
gx0 −

F

λ

)
= 0,

which has the solution

xmax = x0ζ =

√(
F
λ − 2

3gx0
) (

F
λ + 2gx0

)
+ F

λ − 2
3gx0

4
3g

.

Note that the second root of the quadratic equation is not physical, as it would correspond to negative values for
xmax. Finally,

xmax =

√
3 (3F − 2gx0λ) (F + 2gx0λ) + 3F − 2gx0λ

4gλ

3.) There is no contradiction. For x < xeq, the constant force F exceeds the force required for equilibrium, providing
a net upward velocity at the moment when x = xeq. This propels the vertical section of the chain beyond xeq.

4.) For these timescales we have x0/x = o(1) and equation (1) can be simplified (taking the limit x0 → 0) as:

v =

√
F

λ
− 2

3
gx .
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In this case, we obtain the following approximation:

t =

∫ x

0

dx′

v
=

∫ x

0

dx′√
F
λ − 2

3gx
′
= −3

g

√
F

λ
− 2

3
gx′

∣∣∣∣∣
x

0

=
3

g

(√
F

λ
−
√
F

λ
− 2

3
gx

)
.

Solving for x, we find:

x =
3

2g

F
λ

−

(√
F

λ
− gt

3

)2
.

Finally:

x = t

(√
F

λ
− 1

6
gt

)
, t≫ x0

√
F

λ

5.) The descending motion of the chain is governed by:

F − (λx)g + ẋ
d

dt
(λx) =

d

dt
[(λx)ẋ].

The third term on the left-hand side arises because an additional force is exerted by the table on the bottommost
link of the suspended segment of the chain to halt its motion. Alternatively, this result can be derived from the
general mass accretion formula, with the term accounting for the fact that when the bottommost link loses contact
with its upper neighbors before being brought to rest by the table, its velocity matches that of the falling segment.
The above formula simplifies to

F − (λx)g = (λx)ẍ.

Using again ẍ = vdv/dx = (1/2)d(v2)/dx, where v = ẋ we have

F

λx
− g = v

dv

dx
=

1

2

d(v2)

dx
.

From which we obtain, after taking into account the initial condition v = 0 at x = xmax,

v =

√
2g(xmax − x)− 2F

λ
log
(xmax

x

)
6.) The minimum height is obtain by equating the velocity to zero. If we write x as x = (F/λg)ξ and recall that

xmax = 3F/(2λg), we have the equation

0 =
λ

2F
v2 =

λg

F
(xmax − x)− log

(xmax

x

)
=

3

2
− ξ − log

(
3

2ξ

)
.

Hence, using the hint,

xmin =
F

λg
ξ1 = 0.625

F

λg

7.) The plot you are asked to provide
should have the following appear-
ance:

0 5 10 15 20

2

4

6

8

xnum
F

λ g

3 F

2 (λ g)

0.624 F

λ g

Prof. Emili Bagan
Grup d’Informació Quàntica (GIQ)
Departament de Fı́sica, UAB
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7. Stellar observation: from diffraction to interferometry

In 1818, Augustin-Jean Fresnel presented his work on the wave theory of light in front of the French Academy
of Sciences. The panel included eminent scientists of the time, such as Simèon Denis Poisson and François Arago.
Fresnel argued that light behaved as a wave, contrary to Newton’s corpuscular theory, which still had many followers.

During the presentation, Poisson, a staunch supporter of the corpuscular theory, argued that if Fresnel’s wave
theory were correct, a bright spot should be observed at the centre of the shadow cast by an opaque circular object,
which seemed absurd. However, Arago decided to test this prediction. To the surprise of many, the experiment
confirmed the existence of this bright spot, now known as Poisson’s spot or Arago’s spot. This result provided strong
evidence in favour of the wave theory of light, marking a milestone in the history of optics.

Many years have passed since Arago conducted his famous experiment, and in that time, humanity has achieved
incredible feats, such as sending telescopes into space that bring us closer to the deepest mysteries of the universe.
However, what Fresnel and his colleagues discovered remains vitally important today. Their work not only revolu-
tionized our understanding of light but also laid the foundation for the development of advanced optical technologies.
Today, the diffraction phenomenon they studied is fundamental to understanding the resolving power of optical in-
struments like the James Webb Space Telescope, allowing us to explore the cosmos with unprecedented clarity.

Questions

Suppose Arago conducts a second experiment where he illuminates an opaque square object, with side length l, using
coherent light (both spatially and temporally) emitted by an oil lamp with a central wavelength λc. The light source
is placed at a sufficiently large distance from the object to consider that it is illuminated with plane waves.

1. [3 points] Applying the Fraunhofer approximation, calculate the intensity distribution (diffraction pattern) as a
function of the position x and y on the screen if it is located at a distance D ≫ l, and the angular position of the
first diffraction minimum in direction x and direction y. Is there a bright spot?

2. Let us now assume an astronomical telescope with a square aperture of side length L:

a. [1 point] Write the equation for the angular resolving power of this telescope using Rayleigh’s criterion.
Justify your answer.

b. [1 point] Determine if this telescope can resolve as separate objects the binary star system of Sirius,
composed of Sirius A and Sirius B, with an angular distance of approximately θ = 10 arc seconds. Note:
Assume that Sirius A and B present the same energy flux at the telescope plane, that we are observing in
the visible range with an average wavelength of λ = 550 nm. The telescope’s square aperture has a side
length of L = 2.4 meters. (Note: 1◦ = 3600 arc seconds).

3. [3 points] Now we move the telescope to observe the Orion constellation. We set up a double slit (Young’s
double slit) attached to the telescope objective to implement a Michelson stellar interferometer (see the figure
below for reference). Let us consider the one-dimensional model depicted in the figure, where b is the size of
a star, d the distance between slits, a is the distance of the star to the telescope, and D the distance of the slits



PLANCKS 2025 7. Stellar observation: from diffraction to interferometry 23

to the screen (a,D ≫ d). Assuming that the intensity emitted by the star is uniform, calculate the visibility
function, V = Imax−Imin

Imax+Imin
. (Note: sinA − sinB = 2 sin A−B

2 cos A+B
2 ). Neglect the diffraction effects of the

aperture.

4. [2 points] When Michelson used the stellar interferometer to study the star Betelgeuse, a red giant star located
in the Orion constellation, he found that the first minimum of visibility of the interference fringes occurred at a
distance between the slits of d = 308 cm. Using an average wavelength of 570 nm, what is the angular diameter
of the star? If the distance to Orion is estimated to be 1.6 1015 km, what is the diameter of the star?

Solution

1.) The framework of Fraunhofer diffraction, the complex amplitude at the propagated far field, corresponding to an
object distribution given by U(ξ, η) can be calculated as,

U(x, y) =

(
exp(ikz)

iλz

)
exp

(
iπ

λz
(x2 + y2)

)∫∫
U(ξ, η) exp

(
− i2π
λz

(ξx+ ηy)

)
dξdη (1)

where (ξ, η) are the coordinates at the object plane and (x, y) are the coordinates at the propagated plane, and
with λ, z, and k being the wavelength, propagated distance, and wavenumber, respectively.

Under this scenario, if we calculate the diffraction for a squared aperture of size L, we obtain:

U(x, y)

∣∣∣∣
square

= α

L/2∫∫
−L/2

U0 exp

(
− i2π
λD

(xξ + yη)

)
dξdη = U0αL

2

(
sin
(
πxL
λD

)
πxL
λD

)sin
(
πyL
λD

)
πyL
λD

 (2)

where we have rewritten α =
(
exp(ikz)

iλz

)
exp

(
iπ
λz (x

2 + y2)
)

for simplicity and with U0 being the amplitude
distribution at the object which is considered constant over the whole aperture.

Since the intensity is proportional to the square of the amplitude, the intensity distribution at the far field can be
written as,

I(x, y)

∣∣∣∣
square

∝ I0

(
sin
(
πxL
λD

)
πxL
λD

)2
sin

(
πyL
λD

)
πyL
λD

2

(3)

with I0 =
(
U0L2

λD

)2
and where we have set the distance between the object and the screen to z = D.

At this stage, we can calculate the first minimum of the obtained intensity distribution in Eq. (3). For the x
direction it is obtained when the sin

(
2πxL
λD2

)2
= 0, which leads to,

θmin,x ≈ x

D
=
λ

L
(4)

Analogously for the y direction: θmin,y ≈ y
D = λ

L . In relation to the existence of a bright spot with the rectangular
geometry, the answer is yes: equation (3) provides a maximum at x = y = 0. The minima calculated above give
the size of this spot.
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However, at this point, we must take into account that we do not have a square aperture, but rather a solid opaque
square object of the same dimension. Note that if we have a complex plane wave and we calculate the Fraunhofer
diffraction, the transform will take the form,∫ +∞

−∞
exp (iuξ) dξ = 2πδ(u) (5)

where δ(u) represents the Dirac delta function evaluated at the spatial frequencies u.

This integral can be decomposed as the sum of two terms:∫ ∞

−∞
. . . dx =

(∫ −L/2

−∞
. . . dx+

∫ ∞

L/2
. . . dx

)
+

∫ L/2

−L/2
. . . dx (6)

The term in parentheses corresponds to the diffraction of an obstruction, while the last integral corresponds to the
diffraction of an aperture. Thus, the amplitude distribution of the obstruction and the aperture are equal and of
opposite sign, except at the origin, so the intensity distribution will be the same, except at the origin. This implies
that the position of the minima will be the same, so the result obtained in Eq. (4) is valid for the opaque square.
This result is in agreement with Babinet’s principle.

2.) (a) The Rayleigh criterion states that two points are resolvable when the central maximum of one diffraction
pattern coincides with the first minimum of the other. In our case, since the objective aperture is square, the
diffraction pattern will correspond to that found in section 1, and the angular distance to the first minimum
will give the angular resolution power. Therefore, the angular resolution power is given by Eq. (4).

(b) On the one hand, the angular separation of SA and SB in radians will be,

∆θ = 10′′ × 1◦

3600′′
× π rad

180◦
= 4.8× 10−5 rad (7)

On the other hand, the angular resolution power of the telescope will be,

θRP =
λ

L
=

550× 10−9 m
2.4m

= 2.3× 10−7 rad (8)

So, as ∆θ > θRP, we can resolve.

3.) The interference scheme is the following:

Since a,D ≫ d, the path difference between two rays that leave point S and arrive at point P , is

∆ = x
d

D
+ x′

d

a
. (9)

And the retardance is

δ(x, x′) =
2π

λ
∆ =

2π

λ

(
x
d

D
+ x′

d

a

)
(10)



PLANCKS 2025 7. Stellar observation: from diffraction to interferometry 25

Considering Eq. (10), the intensity per unit length at point P on the screen, due solely to the contribution from
point S of the source, can be found from the general interference equation,

I(x, x′)

b
=

2I0
b

(
1 + cos δ(x, x′)

)
=

2I0
b

(
1 + cos

(
2πd

λ

(
x

D
+
x′

a

)))
(11)

where b is the star diameter and where we have assumed that the intensity coming from the two slits is the same.

Total intensity is found by integrating Eq. (11) over all source differentials,

I =

∫ b/2

−b/2

I(x, x′)

b
dx′ = 2I0

[
1 +

sin
(
πbd
aλ

)
πbd
aλ

cos

(
2πx

∆x

)]
(12)

with ∆x = λD
d .

Recall the expression for visibility,

V =
Imax − Imin

Imax + Imin
(13)

where in our case, Imax and Imin are the maxima and minima intensity from Eq. (12).

Considering maxima and minima intensities occurring with cos
(
2πx
∆x

)
= ±1, they take the explicit expression:

Imax = 2I0

[
1 +

sin
(
πbd
aλ

)
πbd
aλ

]
, Imin = 2I0

[
1−

sin
(
πbd
aλ

)
πbd
aλ

]
(14)

Replacing Eqs. (14) in Eq. (13), the visibility can be written as:

V =
sin
(
πbd
aλ

)
πbd
aλ

(15)

4.) The statement tells us that when Michelson used the stellar interferometer to study the star Betelgeuse, he found
that the first minimum of visibility of the interference pattern occurred for a distance between the slits d = 308
cm. Considering the relationship we found for visibility, Eq. (15), for this particular value of the distance between
slits, it must be satisfied that V = 0, this leading to,

b

a
=
λ

d
(16)

where we have set the condition of first minimum (m = 1).

On the other hand, we can find a relationship for the angular diameter of the star Betelgeuse, geometrically, this
leading to:

θ ≈ b

a
(17)

where we have approximated the tangent directly to the angle because the star is far away (a = 1.6×1018m) from
the earth, and thus, the angular angle is very small.

With Eqs. (16) and (17), and substituting the known values, we obtain,

θ =
λ

d
=

570× 10−9m
3.08m

= 1.85× 10−7rad (18)

Once we know the value of the angular diameter, the calculation of Betelgeuse’s diameter is straightforward from
Eq. (17)

b = aθ = 1.6× 1018m × 1.85× 10−7rad = 2.96× 1011m (19)

Dr. Angel Lizana, Prof. Juan Campos
Grup d’Òptica, Departament de Fı́sica, UAB
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8. Graphene nanoribbons

Introduction

Graphene lacks an electronic band gap, limiting its application in electronic devices. However, graphene nanoribbons
(Figure 2 (left)) exhibits different behavior. Let’s estimate the band gap opening in graphene nanoribbons using an
approximate energy dispersion evaluation as a function of the wave vector k. A suitable method to calculate the
energy bands is the tight-binding approximation (TBA), which approximates the electronic wave function as a linear
combination of atomic orbitals. The lattice periodicity is introduced via Bloch’s theorem ψk(x+ na) = eikna ψk(x)
where a is the translation vector in 1D, and n is an integer. In this exercise, we will restrict to interactions between
nearest neighbors. As an example of TBA in a one-dimensional chain, consider an infinite polyacetylene carbon chain
with single and double bonds (Figure 1(left)).

Figure 1: (left) Polyacetylene chain; (right) schematic representation

The unit cell in this case is composed of two atoms, labeled atom 1 and atom 2 (fig. 1 (right)). Within TBA the
wavefunction can be expressed as a linear combination of the wavefunctions in the unit cell, ψi(x), which can be
written in terms of the atomic orbital wavefunctions ϕi(x), each weighted by a phase factor (Bloch’s theorem):

ψk(x) = ζ1ψ
1
k(x) + ζ2ψ

2
k(x) with ψ1,2

k (x) =
1√
Nc

Nc∑
n=1

eik(x+na) ϕ1,2(x+ na) (1)

where n runs over the Nc unit cells. To solve the Schrödinger equation, we project it onto ⟨ψ1
k| and ⟨ψ2

k|, resulting
in a system of two equations. We assume that only nearest neighbor interactions are non-zero. The hopping integral
⟨ϕi|H|ϕj⟩ for the interaction between 1 → 2 is γ1 and for the interaction between 2 → 1 is γ2 (fig. 1b). The on-site
energy, ⟨ϕi|H|ϕi⟩ = ε0 and the orbital overlap term ⟨ϕi|ϕj⟩ = δij . This yields the eigenvalue equation (Eq. 2) that
needs to be solved for the energy, εk. In summary, each term of the matrix accounts for interactions between i and
j, as shown by the rows and column labels, weighted by phase factors such as e±ika, when interacting with nearest
neighbors in different cells:

1 2
1
2

[
ε0 γ1 + γ2 e

−ika

γ1 + γ2 e
+ika ε0

] [
ζ1
ζ2

]
= εk

[
1 0
0 1

] [
ζ1
ζ2

]
(2)

Questions

Armchair graphene nanoribbons are one-dimensional, infinitely long linear chains with a width W, as illustrated in
Figure 2 (left).

Figure:2 (left) armchair graphene nanoribbon; (right) schematic representation used for the TBA in this exercise
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Our goal is to use tight-binding approximation, as explained in the introduction, to calculate the energy dispersion
relation. As a simplification take the simplest infinite nanoribbon along direction x, as shown in fig. 2 (right). Assume
the on-site energy, ε0, is zero, and the hopping integral between nearest neighbors are γ and γe (fig. 2 (right)), with
values γ = −2.70 eV and γe = −3.02 eV.

1. [1 point] Construct the unit cell.

2. [1 point] Write the wave function of an electronic orbital in the unit cell.

3. [2.5 points] Build the matrix of the eigenvalue equation, either by applying TBA or by similarity with Eq. (2).

4. [2 points] Calculate the energy gap at the Γ point (k = 0).

5. [1 point] What would happen with the energy gap if the interaction between atoms in the nanoribbon is the
same for all atoms, i.e. γ = γe = −2.70 eV?

6. [2.5 points] Make a schematic representation of: i) energy E versus wave vector k between 0 and π/a for all
the bands; ii) E versus the density of states (DOS) for the valence band. Note: Recall that the DOS in 3D can
be evaluated according to g(E) = 2

(2π)3

∫
S

dS
|∇kE| , where the integral is performed on a constant energy surface,

and the factor 2 accounts for spin degeneration.
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Solution

1.) (1 point) The unit cell is

2.) (1 point) Wave function of an electronic orbital in the unit cell.

In TBA we write the wave function as function of atomic wave functions. Since we have 4 atoms in the unit cell:

ψk(x) = ζ1ψ
1
k(x) + ζ2ψ

2
k(x) + ζ3ψ

3
k(x) + ζ4ψ

4
k(x)

where j = 1, 2, 3, 4 refers to the 4 atoms of the unit cell, with

ψj
k(x) =

1√
Nc

Nc∑
n=1

eik(x+na) ϕj(x+ na)

3.) (2.5 points) Build the Hamiltonian matrix.

a) Easy (direct) way by comparing the case of polyacetylene chain, Eq. (2).

We take ε0 = 0 and first neighbor interactions as γ and γe; γ for interactions 1 ↔ 2 and 3 ↔ 4, and γe for
interactions 2 ↔ 3 and 1 ↔ 4. We also apply phase factors between unit cells (e±ika) when needed. One gets

1
2
3
4


0 γ 0 γee

−ika

γ 0 γe 0
0 γe 0 γ

γee
ika 0 γ 0


b) Standard procedure.

We need to solve the Schrödinger equation
Ĥ|ψ⟩ = ε|ψ⟩.

Therefore we project it over the 4 states ⟨ψi
k| to construct the Hamiltonian matrix:

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44



ζ1
ζ2
ζ3
ζ4

 = εk


ζ1
ζ2
ζ3
ζ4

 (3)

As an example, we calculate the first row by projecting over state ⟨ψ1
k|:

⟨ψ1
k|H|ψk⟩ = ⟨ψ1

k|H|ζ1ψ1
k(x) + ζ2ψ

2
k(x) + ζ3ψ

3
k(x) + ζ4ψ

4
k(x)⟩ =

= ζ1⟨ψ1
k|H|ψ1

k⟩+ ζ2⟨ψ1
k|H|ψ2

k⟩+ ζ3⟨ψ1
k|H|ψ3

k⟩+ ζ4⟨ψ1
k|H|ψ4

k⟩.

Now let us calculate one by one:

H11 = ⟨ψ1
k|H|ψ1

k⟩ =
1

Nc

Nc∑
m,n

eik(m−n)a ⟨ϕ1(x+ na)|H|ϕ1(x+ma)⟩

= ⟨ϕ1|H|ϕ1⟩ = ε0,1⟨ϕ1|ϕ1⟩ = ε0,1 = ε0
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since m = n. Identically for H22 = H33 = H44 → ε0,2 = ε0,3 = ε0,4 = ε0. In addition, we considered ε0 = 0.

Let us look at the interaction 1 → 2:

H12 = ⟨ψ1
k|H|ψ2

k⟩ =
1

Nc

Nc∑
m,n

eik(m−n)a ⟨ϕ1(x+ na)|H|ϕ2(x+ma)⟩ =

= ⟨ϕ1|H|ϕ2⟩ = γ

since we only account for 1 → 2 in the same cell, i.e. m = n.

Since 1 and 3 are not nearest neighbors therefore H13 = 0.

Finally,

H14 = ⟨ψ1
k|H|ψ4

k⟩ =
1

Nc

Nc∑
m,n

eik(m−n)a ⟨ϕ1(x+ na)|H|ϕ4(x+ma)⟩.

Now 1 is in cell n and the interactions with 4 in cell n− 1. Then

H14 =
1

Nc

Nc∑
n

eik(n−1−n)a ⟨ϕ1(x+ na)|H|ϕ4(x+ (n− 1)a)⟩ =

= e−ika⟨ϕ1|H|ϕ4⟩ = γee
−ika.

Then the first row is
1 2 3 4

1 → 0 γ 0 γee
−ika

By analogy we can proceed fast to write the elements of the matrix for j = 2, 3, 4:
0 γ 0 γee

−ika

γ 0 γe 0
0 γe 0 γ

γee
ika 0 γ 0


4.) (2 points) In order to calculate the energy gap at the Γ point (k = 0) we need to solve the Schrödinger equation in

matrix form 
0 γ 0 γee

−ika

γ 0 γe 0
0 γe 0 γ

γee
ika 0 γ 0



ζ1
ζ2
ζ3
ζ4

 = εk


ζ1
ζ2
ζ3
ζ4

 (4)

which means det(Ĥ − εk · I) = 0, i.e. ∣∣∣∣∣∣∣∣
−εk γ 0 γee

−ika

γ −εk γe 0
0 γe −εk γ

γee
ika 0 γ −εk

∣∣∣∣∣∣∣∣ =

= −εk

∣∣∣∣∣∣
−εk γe 0
γe −εk γ
0 γ −εk

∣∣∣∣∣∣− γ

∣∣∣∣∣∣
γ 0 γee

−ika

γe −εk γ
0 γ −εk

∣∣∣∣∣∣− γe

∣∣∣∣∣∣
γ 0 γee

−ika

−εk γe 0
γe −εk γ

∣∣∣∣∣∣ = ... = ε4k − S1ε
2
k + S2 = 0,

with
S1 = 2(γ2 + γ2e ), S2 = γ4 + γ4e − 2γ2γ2e cos ka.

Then,

ε2k =
1

2

(
S1 ±

√
S2
1 − 4S2

)
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and one obtains 4 solutions, i.e. 4 bands, with energies:

1 → +

√
γ2 + γ2e +

√
2 γγe

√
1 + cos ka

2 → +

√
γ2 + γ2e −

√
2 γγe

√
1 + cos ka

3 → −
√
γ2 + γ2e +

√
2 γγe

√
1 + cos ka

4 → −
√
γ2 + γ2e −

√
2 γγe

√
1 + cos ka

At the point Γ(k = 0), introducing the values for γ and γe, one finds

1 → + 5.724 eV

2 → + 0.324 eV

3 → − 5.724

4 → − 0.324 eV

Then, the opening of the band gap at Γ is the difference between 2 and 4:

Egap = 0.648 eV.

5.) (1 point) If the interaction between atoms in the nanoribbon is the same for all atoms γ = γe = −2.70 eV, the
opening of the gap is zero, Egap = 0. This is the situation for graphene!

6.) i) The graph of the energy versus k obtained from the above expressions has the form displayed in fig. 3 (0.75
points).

ii) E versus DOS (1.75 points)

Finally, let us see that the density of states diverges for a 1D structure at the Γ point (k = 0). In 3D the DOS is

g(E) =
2

(2π)3

∫
S

dkxdky
|∇kE|

,
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where the integral extends to the surface of constant energy. In 1D the integral can only take 2 values of constant
energy, then

g(E) =
2

2π

2

|dE/dk|
.

We found

εk = ±
√
γ2 + γ2e ±

√
2 γγe

√
1 + cos ka ≡ ±

(
A±B (1 + cos ka)1/2

)1/2
so that

g(ε) =
8

πa

(
A±B (1 + cos ka)1/2

)1/2
(1 + cos ka)1/2

sin ka
=

=
8

πaB

εk

(
ε2k−A
B

)
sin ka

Clearly, this expression diverges at k → 0 (since sin ka → 0), which is the typical behaviour for 1D structures.
The plot is as follows (only the schematic representation of the valence band is requested):

Prof. Javier Rodrı́guez-Viejo
Grup de Fı́sica de Materials
Departament de Fı́sica, UAB



PLANCKS 2025 9. Quantum Grover algorithm and classical collisions 32

9. Quantum Grover algorithm and classical collisions

The quantum Grover algorithm is an oracle algorithm that can find a register in an unstructured list of N
registers (Imagine finding a name in a telephone book if we are given the telephone number).
The idea is to start with an equally weighted state of all registers:

|ψ0⟩ =
1√
N

N−1∑
x=0

|x⟩,

and do some operations that enhance the amplitude of the marked register denoted by |w⟩. One first writes
|ψ0⟩ in a two-dimensional basis

|ψ0⟩ =
√
N − 1

N
|α⟩+

√
1

N
|w⟩,

where |α⟩ is the state of all unmarked registers (of course, ⟨α|w⟩ = 0). In the {|α⟩, |w⟩} basis, the oracle is
given by a unitary matrix

U =

(
1 0
0 −1

)
that adds a phase, −1, to the amplitude of the marked state |w⟩. The Grover algorithm is the following:

(I) Apply the oracle U

(II) Do a unitary operation that can be seen as a reflection over |ψ0⟩

K = 2|ψ0⟩⟨ψ0| − 1,

(III) Repeat operations (I) and (II) until the amplitude of |w⟩ is maximal, i.e. when measuring the state after
these iterations one obtains |w⟩ with maximum probability.

1. [2 points] Show that KU can be written as a rotation matrix G(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, and find the θ as a

function of N .

2. [2 points] Show that if N = 4, one iteration of the Grover algorithm is sufficient to find the marked state.
[Recall that cos θ/2 =

√
(1 + cos θ)/2 and sin θ/2 =

√
(1− cos θ)/2].

3. [2 points] Find the general expression of N (although in general, it will not be a natural number) in terms of
the number of times, n, the oracle must be called for the Grover algorithm to find the exact marked state. For
solutions of large N , use the Taylor expansion to find the asymptotic expression of n as a function of N .
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It is interesting to realize that the quantum Grover algorithm is formally equivalent to the following classical
scattering problem. Imagine a dystopian classical world where energy has become very scarce. In this
scenario, we aim to design a mountain train that operates without consuming energy, relying solely on the
physics of elastic collisions.

The train consists of two parts: a locomotive without an engine of mass m1 and a coach of mass m2, with
m1 > m2. The locomotive is positioned at the rear, while the coach leads at the front. Starting from rest at
an initial height on a mountain, the train descends toward a bottom station, reaching a final velocity v = 1 (in
arbitrary units).

Although the train’s components descend simultaneously, they are not physically connected. Upon reaching
the bottom station, the coach collides with a wall, reversing its velocity, and subsequently collides with the
locomotive. These collisions may be repeated multiple times. All collisions are assumed to be perfectly elastic
and to occur sequentially.

4. [2 points] Demonstrate that this classical scattering problem is formally equivalent to the operations of the
Grover algorithm, where the oracle U corresponds to the collision ofm2 with the bottom wall andK represents
the locomotive-coach collisions. Derive the expressions relating m1 and m2 to N .

Hint: The following rescaling of the velocities is very useful: ξi =
√
mi/M vi where M = m1 +m2. To ease

the notation, it is also convenient to define the ratio η = m1/m2.

5. [2 points] What is the minimum mass ratio, η = m1/m2 (with η > 1), required for the coach to remain stopped
at the bottom station after the train descends?

6. [1 point] If the train took a time T to descend, how much time do passengers have to do their shopping before
the locomotive returns to the bottom station after reaching its maximum height? (assume the mountain is a
sloped plane)

7. [2 points] In the above scenario, when the locomotive reaches the bottom station it collides with the stopped
coach and a second round of collisions occurs. When this round ends, what are the final velocities of the coach
and the locomotive?

8. [2 points] Derive the general expression for the mass ratio η under which this “park-and-pick-up” phenomenon
occurs.
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Solution

1.) (2 points) Show that KU can be written as a rotation matrix G(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, and find the θ as a

function of N .

K = 2|ψ0⟩⟨ψ0| − 1 =

(
(N − 2)/N 2

√
N − 1/N

2
√
N − 1/N (2−N)/N

)
,

KU =

(
(N − 2)/N 2

√
N − 1/N

2
√
N − 1/N (2−N)/N

)(
1 0
0 −1

)
=

(
(N − 2)/N −2

√
N − 1/N

2
√
N − 1/N (N − 2)/N

)
,

Defining cos θ = N−2
N and sin θ = 2

√
N−1
N → KU = G(θ).

2.) (2 points) Show that if N = 4, one iteration of the Grover algorithm is sufficient to find the marked state. [Recall
that cos θ/2 =

√
(1 + cos θ)/2 and sin θ/2 =

√
(1− cos θ)/2].

Note that cos θ/2 =

√
1 + cos θ

2
=

√
N − 1

N
and sin θ/2 =

√
1− cos θ

2
=

√
1

N
. Thus,

|ψ0⟩ =

√N−1
N√
1
N

 =

(
cos θ/2
sin θ/2

)
.

Then,

KU |ψ0⟩ = |w⟩ ⇒ G(θ)

(
cos θ/2
sin θ/2

)
=

(
cos(θ + θ/2)
sin(θ + θ/2)

)
=

(
0
1

)
.

θ + θ/2 = π/2 ⇒ θ =
π

3
,

sin2 θ/2 =
1

N
→ N =

1

sin2 π
6

= 4.

One can also find this result directly by substituting N = 4 in the expressions of KU and |ψ0⟩:

KU |ψ0⟩ =
(

1/2 −
√
3/2√

3/2 1/2

)(√
3/2
1/2

)
=

(
0
1

)
.

3.) (2 points) Find the general expression of N (although in general, it will not be a natural number) in terms of the
number of times, n, the oracle must be called for the Grover algorithm to find the exact marked state. For solutions
of large N , use the Taylor expansion to find the asymptotic expression of n as a function of N .

[G(θ)]n|ψ0⟩ = G(nθ)|ψ0⟩|w⟩ ⇒
(
cosnθ − sinnθ
sinnθ sinnθ

)(
cos θ/2
sin θ/2

)
=

(
cos(nθ + θ/2)
sin(nθ + θ/2)

)
=

(
0
1

)
nθ + θ/2 = π/2 ⇒ θ =

π

2n+ 1

sin2 θ/2 =
1

N
→ N =

[
sin2

π

2(2n+ 1)

]−1

N − 1 = cot2
π

2(2n+ 1)
.

Note that n = 1 gives N = 4.
For large N

N ≃ 4(2n+ 1)2

π2
≃ 16

π2
n2 ⇒ n ≃ π

4

√
N.
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4.) (2 points) Demonstrate that this classical scattering problem is formally equivalent to the operations of the Grover
algorithm, where the oracle U corresponds to the collision of m2 with the bottom wall and K represents the
locomotive-coach collisions. Derive the expressions relating m1 and m2 to N .

Hint: The following rescaling of the velocities is very useful: ξi =
√
mi/M vi where M = m1 +m2. To ease

the notation, it is also convenient to define the ratio η = m1/m2.

We take the convention that the positive direction is downwards and impose energy and momentum conservation.

The rescaling ξi =
√
mi/Mvi renders the energy conservation equation equivalent to the conservation of the

modulus of the vector ξ⃗
ξ21 + ξ22 = ξ′21 + ξ′22 = 1

Momentum conservation reads √
m1ξ1 +

√
m2ξ2 =

√
m1ξ

′
1 +

√
m2ξ

′
2

On can easily solve these equations to get(
ξ′1
ξ′2

)
=

(
(m1 −m2)/(m1 +m2) 2

√
m1m2/(m1 +m2)

2
√
m1m2/(m1 +m2) (m2 −m1)/(m1 +m2)

)(
ξ1
ξ2

)
= S

(
ξ1
ξ2

)
.

Defining η = m1/m2, the matrix S can be rewritten as

S =

(
(η − 1)/(η + 1) 2

√
η/(η + 1)

2
√
η/(η + 1) −(η − 1)/(η + 1)

)
.

The collision with the wall can be introduced as

U =

(
1 0
0 −1

)
,

such that

SU =

(
(η − 1)/(η + 1) −2

√
η/(η + 1)

2
√
η/(η + 1) (η − 1)/(η + 1)

)
is a rotation of angle θ, SU = G(θ) (defined in 1) with

cos θ =
η − 1

η + 1
, sin θ = 2

√
η

η + 1
, and η = cot2 θ/2.

5.) (2 points) What is the minimum mass ratio, η = m1/m2 (with η > 1), required for the coach to remain stopped
at the bottom station after the train descends?

The initial state, considering v1 = v2 = v = 1 can be written as

ξ⃗ =

(
ξ1
ξ2

)
=

(√
η/(η + 1)

1/
√
η + 1

)
=

(
cos θ/2
sin θ/2

)
,

Then, if the coach remains stopped at the bottom station after the first collision (v′2 = 0) and the locomotive goes
up to the mountain

SUξ⃗ = G(θ)

(
cos θ/2
sin θ/2

)
=

(
cos(θ + θ/2)
sin(θ + θ/2)

)
=

(
−1
0

)
.

and thus, 3θ
2 = π → θ = 2π

3 . The mass ratio is η = m1
m2

= cot2 π
3 = 1

3 , which means that the coach can not
remain stopped at the bottom station after the first collision unless m1 < m2. Then, we need to consider a second
collision

G2(θ)ξ⃗ =

(
cos 2θ − sin 2θ
sin 2θ sin 2θ

)(
cos θ/2
sin θ/2

)
=

(
cos(2θ + θ/2)
sin(2θ + θ/2)

)
=

(
−1
0

)
.

In this case θ =
2π

5
, η = cot2

π

5
= 1 +

2√
5
> 1 and ξ⃗ =

(
cos(π/5)
sin(π/5)

)
.

From the equation in terms of η: (KU)2ξ⃗ =

(
−1
0

)
we arrive at 5η2 − 10η + 1 = 0 which directly gives

η = 1 + 2/
√
5 = cot2(π/5) (which is a way of finding this trigonometric expression).
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6.) (1 point) If the train took a time T to descend, how much time do passengers have to do their shopping before the
locomotive returns to the bottom station after reaching its maximum height? (assume the mountain is a sloped
plane)

If v′2 = 0, energy conservation implies that v′1 =
√
m1 +m2

m1
=

√
1 + η

η
.

Since T ∝ v:

T ′ = 2
v′1
v1
T = 2

√
1 + η

η
T = 2(

√
5− 1)T = 2.47T.

Recall that v1 = v2 = v = 1.

7.) (2 points) In the above scenario, when the locomotive reaches the bottom station it collides with the stopped coach
and a second round of collisions occurs. When this round ends, what are the final velocities of the coach and the
locomotive?

Before the second round of collisions, the rescaled velocity vector is ξ⃗(2) =
(
1
0

)
. Notice that now there is a first

locomotive-coach collision and then a reflection, i.e. we have the sequence US. Observe that US = (SU)−1),
i.e. US = G(−θ).

USξ⃗(2) = G(−2π/5)

(
1
0

)
=

(
cos(2π/5)
− sin(2π/5)

)
.

Since cos(2π/5) and sin(2π/5) > 0, there is a second sequence of collisions

(US)(US)ξ⃗(2) = G(−4π/5)

(
1
0

)
=

(
cos(4π/5)
− sin(4π/5)

)
= −

(
cos(π/5)
sin(π/5)

)
.

The velocities are identical to the initial ones (see 5), but reversed.

8.) (2 points) Derive the general expression for the mass ratio η under which this “park-and-pick-up” phenomenon
occurs.

Gn(θ)ξ⃗ = G(nθ)ξ⃗ =

(
cos(n+ 1/2)θ
sin(n+ 1/2)θ

)
=

(
−1
0

)
⇒ θn =

2π

2n+ 1
⇒ ηn = cot2

π

2n+ 1
,

where n is the number of locomotive-coach collisions until the coach remains stopped. As shown in 5, the n = 1
value (η1 = 1/3) is also a valid mass ratio, but corresponds to a case where m1 < m2.

Prof. Verònica Ahufinger
Grup d’Òptica
Departament de Fı́sica, UAB

Prof. Ramón Muñoz-Tapia
Grup d’Informació Quàntica (GIQ)
Departament de Fı́sica, UAB


	1. Levitation in an Anti-Helmholtz coil
	2. Surface Adsorption
	3. Second sound
	4. Some questions about our universe
	5. Black Hole Shadow
	 6. Pulling a chain upwards with constant force
	7. Stellar observation: from diffraction to interferometry
	8. Graphene nanoribbons
	9. Quantum Grover algorithm and classical collisions

